Molekulargenetisches Labor
Zentrum für Nephrologie und Stoffwechsel
Moldiag Erkrankungen Gene Support Kontakt

Störungen des Harnsäurestoffwechsels

Störungen des Harnsäurestoffwechsels können erhöhte und erniedrigte Plasma-Harnsäure-Spiegel aufweisen. Sie umfassen Störungen der Harnsäure-Produktion und -Ausscheidung.

Gliederung

Erbliche Stoffwechselerkrankungen
Coenzym Q10-Mangel
Erbliche Fettstoffwechselerkrankungen
Genetisch bedingte Hyperbilirubinämie
Glycolipidose
HADH-Mangel
Hereditäre Störungen des Proteinmetabolismus
Hyperkatabole Hypoproteinämie
Hyperzinkämie und Hypercalprotectinämie
Hypomagnesiämie
Hypomethylierungs-Syndrom
Kongenitale Glykosilierungsstörung
Lebensmittelunverträglichkeiten
Lysosomale Speicherkrankheiten
MELAS-Syndrom
Methioninadenosyltransferase-Mangel
Methylmalonazidurie
Störungen des Cobalaminstoffwechsels
Störungen des Eisenstoffwechsels
Störungen des Glucosestoffwechsels
Störungen des Harnstoffzyklus
Störungen des Harnsäurestoffwechsels
Hyperuricämie
Hyperuricämische Nephropathie
Juvenile hyperuricämische Nephropathie Typ 1
UMOD
Juvenile hyperuricämische Nephropathie Typ 2
REN
Kelley-Seegmiller-Syndrom
HPRT1
Lesch-Nyhan-Syndrom
HPRT1
Veranlagung für Gicht 1
ABCG2
Hypouricämie
Renale Hypourikämie
SLC22A12
SLC2A9
PRPS-bedingte Gicht
PRPS1
Phosphoribosylpyrophosphat-Synthetase-Überaktivität
PRPS1
Störungen des Phosphathaushaltes

Referenzen:

1.

Upchurch KS et al. (1975) Hypoxanthine phosphoribosyltransferase deficiency: association of reduced catalytic activity with reduced levels of immunologically detectable enzyme protein.

external link
2.

Andrés A et al. (1987) Partial deficit of hypoxanthine guanine phosphoribosyl transferase presenting as acute renal failure.

external link
3.

Page T et al. (1987) Syndrome of mild mental retardation, spastic gait, and skeletal malformations in a family with partial deficiency of hypoxanthine-guanine phosphoribosyltransferase.

external link
4.

Gafter U et al. (1989) Hypouricemia due to familial isolated renal tubular uricosuria. Evaluation with the combined pyrazinamide-probenecid test.

external link
5.

Sanberg PR et al. (1990) Neural basis of behavior: animal models of human conditions.

external link
6.

Moro F et al. (1991) Familial juvenile gouty nephropathy with renal urate hypoexcretion preceding renal disease.

external link
7.

Yokota N et al. (1991) Autosomal dominant transmission of gouty arthritis with renal disease in a large Japanese family.

external link
8.

Moro F et al. (1991) Does allopurinol affect the progression of familial juvenile gouty nephropathy?

external link
9.

Yukawa T et al. (1992) A female patient with Lesch-Nyhan syndrome.

external link
10.

Akaoka I et al. (1975) Familial hypouricaemia due to renal tubular defect of urate transport.

external link
11.

Ghangas GS et al. (1975) Radioimmune determination of hypoxanthine phosphoribosyltransferase crossreacting material in erythrocytes of Lesch-Nyhan patients.

external link
12.

Takeda E et al. (1985) Hereditary renal hypouricemia in children.

external link
13.

Benjamin D et al. (1978) Familial hypouricemia due to isolated renal tubular abnormality.

external link
14.

Bakay B et al. (1979) Utilization of purines by an HPRT variant in an intelligent, nonmutilative patient with features of the Lesch-Nyhan syndrome.

external link
15.

Frank M et al. (1979) Familial renal hypouricaemia: two additional cases with uric acid lithiasis.

external link
16.

Piret SE et al. (2011) Genome-wide study of familial juvenile hyperuricaemic (gouty) nephropathy (FJHN) indicates a new locus, FJHN3, linked to chromosome 2p22.1-p21.

external link
17.

Bernascone I et al. (2010) A transgenic mouse model for uromodulin-associated kidney diseases shows specific tubulo-interstitial damage, urinary concentrating defect and renal failure.

external link
18.

Zaucke F et al. (2010) Uromodulin is expressed in renal primary cilia and UMOD mutations result in decreased ciliary uromodulin expression.

external link
19.

Dahan K et al. (2003) A cluster of mutations in the UMOD gene causes familial juvenile hyperuricemic nephropathy with abnormal expression of uromodulin.

external link
20.

DUNCAN H et al. (1960) Gout, familial hypericaemia, and renal disease.

external link
21.

Stacey JM et al. (2003) Genetic mapping studies of familial juvenile hyperuricemic nephropathy on chromosome 16p11-p13.

external link
22.

Fairbanks LD et al. (2002) Early treatment with allopurinol in familial juvenile hyerpuricaemic nephropathy (FJHN) ameliorates the long-term progression of renal disease.

external link
23.

Hedley JM et al. (1980) Familial hypouricaemia associated with renal tubular uricosuria and uric acid calculi: case report.

external link
24.

Fu R et al. (2015) Clinical severity in Lesch-Nyhan disease: the role of residual enzyme and compensatory pathways.

external link
25.

Sarafoglou K et al. (2010) Lesch-Nyhan variant syndrome: variable presentation in 3 affected family members.

external link
26.

Cristini S et al. (2010) Human neural stem cells: a model system for the study of Lesch-Nyhan disease neurological aspects.

external link
27.

Ceballos-Picot I et al. (2009) Hypoxanthine-guanine phosphoribosyl transferase regulates early developmental programming of dopamine neurons: implications for Lesch-Nyhan disease pathogenesis.

external link
28.

Hladnik U et al. (2008) Variable expression of HPRT deficiency in 5 members of a family with the same mutation.

external link
29.

Ichida K et al. (2008) Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese.

external link
30.

Tanaka M et al. (2003) Two male siblings with hereditary renal hypouricemia and exercise-induced ARF.

external link
31.

Enomoto A et al. (2002) Molecular identification of a renal urate anion exchanger that regulates blood urate levels.

external link
32.

None (1997) The recognition of Lesch-Nyhan syndrome as an inborn error of purine metabolism.

external link
33.

Jinnah HA et al. (1994) Dopamine deficiency in a genetic mouse model of Lesch-Nyhan disease.

external link
34.

Kamatani N et al. (2000) Localization of a gene for familial juvenile hyperuricemic nephropathy causing underexcretion-type gout to 16p12 by genome-wide linkage analysis of a large family.

external link
35.

Weitz R et al. (1980) Hereditary renal hypouricemia. Isolated tubular defect of urate reabsorption.

external link
36.

Shichiri M et al. (1982) Hypouricemia due to an increment in renal tubular urate secretion.

external link
37.

Harkness RA et al. (1983) Xanthine oxidase deficiency and 'Dalmatian' hypouricaemia: incidence and effect of exercise.

external link
38.

Gibbs DA et al. (1984) First-trimester diagnosis of Lesch-Nyhan syndrome.

external link
39.

Boyle JA et al. (1970) Lesch-Nyhan syndrome: preventive control by prenatal diagnosis.

external link
40.

Greene ML et al. (1972) Hypouricemia due to isolated renal tubular defect. Dalmatian dog mutation in man.

external link
41.

Albertini RJ et al. (1973) Somatic cell mutation. Detection and quantification of x-ray-induced mutation in cultured, diploid human fibroblasts.

external link
42.

Khachadurian AK et al. (1973) Hypouricemia due to renal uricosuria. A case study.

external link
43.

Fujimoto WY et al. (1968) Biochemical diagnosis of an X-linked disease in utero.

external link
44.

van der Zee SP et al. (1968) Megaloblastic anaemia in the Lesch-Nyhan syndrome.

external link
45.

Francke U et al. (1976) The occurrence of new mutants in the X-linked recessive Lesch-Nyhan disease.

external link
46.

Henderson JF et al. (1969) Inheritance of purine phosphoribosyltransferases in man.

external link
47.

Greene ML et al. (1970) Hypoxanthine-guanine phosphoribosyltransferase deficiency and Xg blood group.

external link
48.

Nyhan WL et al. (1970) Hemizygous expression of glucose-6-phosphate dehydrogenase in erythrocytes of heterozygotes for the Lesch-Nyhan syndrome.

external link
49.

Yü TF et al. (1972) Rarity of X-linked partial hypoxanthine-guanine phosphoribosyltransferase deficiency in a large gouty population.

external link
50.

Migeon BR et al. (1968) X-linked hypoxanthine-guanine phosphoribosyl transferase deficiency: heterozygote has two clonal populations.

external link
51.

Silvers DN et al. (1972) Detection of heterozygote in Lesch-Nyhan disease by hair-root analysis.

external link
52.

McDonald JA et al. (1971) Lesch-Nyhan syndrome: altered kinetic properties of mutant enzyme.

external link
53.

Nabholz M et al. (1969) Genetic analysis with human--mouse somatic cell hybrids.

external link
54.

Kelley WN et al. (1967) A specific enzyme defect in gout associated with overproduction of uric acid.

external link
55.

Wilson JM et al. (1986) A molecular survey of hypoxanthine-guanine phosphoribosyltransferase deficiency in man.

external link
56.

Seegmiller JE et al. (1967) Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis.

external link
57.

Gartler SM et al. (1975) Half chromatid mutations: transmission in humans?

external link
58.

None (1977) A probable sex difference in some mutation rates.

external link
59.

Morton NE et al. (1977) Genetic epidemiology of Lesch-Nyhan disease.

external link
60.

Vylet'al P et al. (2006) Alterations of uromodulin biology: a common denominator of the genetically heterogeneous FJHN/MCKD syndrome.

external link
61.

Rampoldi L et al. (2003) Allelism of MCKD, FJHN and GCKD caused by impairment of uromodulin export dynamics.

external link
62.

Turner JJ et al. (2003) UROMODULIN mutations cause familial juvenile hyperuricemic nephropathy.

external link
63.

Hart TC et al. (2002) Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy.

external link
64.

Stibůrková B et al. (2000) Familial juvenile hyperuricemic nephropathy: localization of the gene on chromosome 16p11.2-and evidence for genetic heterogeneity.

external link
65.

McBride MB et al. (1998) Presymptomatic detection of familial juvenile hyperuricaemic nephropathy in children.

external link
66.

Zivná M et al. (2009) Dominant renin gene mutations associated with early-onset hyperuricemia, anemia, and chronic kidney failure.

external link
67.

LESCH M et al. (1964) A FAMILIAL DISORDER OF URIC ACID METABOLISM AND CENTRAL NERVOUS SYSTEM FUNCTION.

external link
68.

McBride MB et al. (1997) Familial renal disease or familial juvenile hyperuricaemic nephropathy?

external link
69.

Saeki A et al. (1995) Newly discovered familial juvenile gouty nephropathy in a Japanese family.

external link
70.

Simmonds HA et al. (1980) Familial gout and renal failure in young women.

external link
71.

Massari PU et al. (1980) Familial hyperuricemia and renal disease.

external link
72.

Leumann EP et al. (1983) Familial nephropathy with hyperuricemia and gout.

external link
73.

Van Goor W et al. (1971) An unusual form of renal disease associated with gout and hypertension.

external link
74.

Cameron JS et al. (1990) Precocious familial gout.

external link
75.

Hodanová K et al. (2005) Mapping of a new candidate locus for uromodulin-associated kidney disease (UAKD) to chromosome 1q41.

external link
76.

Francke U et al. (1977) Answer to criticism of Morton and Lalouel.

external link
77.

HOEFNAGEL D et al. (1965) HEREDITARY CHOREOATHETOSIS, SELF-MUTILATION AND HYPERURICEMIA IN YOUNG MALES.

external link
78.

Stibůrková B et al. (2003) Familial juvenile hyperuricaemic nephropathy (FJHN): linkage analysis in 15 families, physical and transcriptional characterisation of the FJHN critical region on chromosome 16p11.2 and the analysis of seven candidate genes.

external link
79.

Srivastava T et al. (2002) Childhood hyperuricemia and acute renal failure resulting from a missense mutation in the HPRT gene.

external link
80.

Zoref-Shani E et al. (2000) Kelley-Seegmiller syndrome due to a unique variant of hypoxanthine-guanine phosphoribosyltransferase: reduced affinity for 5-phosphoribosyl-1-pyrophosphate manifested only at low, physiological substrate concentrations.

external link
81.

Graham GW et al. (1996) Prenatal diagnosis by enzyme analysis in 15 pregnancies at risk for the Lesch-Nyhan syndrome.

external link
82.

Wong DF et al. (1996) Dopamine transporters are markedly reduced in Lesch-Nyhan disease in vivo.

external link
83.

Nyhan WL et al. (1996) New approaches to understanding Lesch-Nyhan disease.

external link
84.

Ernst M et al. (1996) Presynaptic dopaminergic deficits in Lesch-Nyhan disease.

external link
85.

Strauss GH et al. (1980) An enumerative assay of purine analogue resistant lymphocytes in women heterozygous for the Lesch-Nyhan Mutation.

external link
86.

Lloyd KG et al. (1981) Biochemical evidence of dysfunction of brain neurotransmitters in the Lesch-Nyhan syndrome.

external link
87.

Rosenbloom FM et al. (1967) Inherited disorder of purine metabolism. Correlation between central nervous system dysfunction and biochemical defects.

external link
Update: 14. August 2020
Copyright © 2005-2024 Zentrum für Nephrologie und Stoffwechsel, Dr. Mato Nagel
Albert-Schweitzer-Ring 32, D-02943 Weißwasser, Deutschland, Tel.: +49-3576-287922, Fax: +49-3576-287944
Seitenüberblick | Webmail | Haftungsausschluss | Datenschutz | Impressum