Molekulargenetisches Labor
Zentrum für Nephrologie und Stoffwechsel
Moldiag Erkrankungen Gene Support Kontakt

Hyperuricämie

Unter Hyperurikämie werden Störungen des Uratstoffwechsels zusammengefasst, die mit einem erhöhten Harnsäurespiegel einhergehen.

Gliederung

Störungen des Harnsäurestoffwechsels
Hyperuricämie
Hyperuricämische Nephropathie
Juvenile hyperuricämische Nephropathie Typ 1
UMOD
Juvenile hyperuricämische Nephropathie Typ 2
REN
Kelley-Seegmiller-Syndrom
HPRT1
Lesch-Nyhan-Syndrom
HPRT1
Veranlagung für Gicht 1
ABCG2
Hypouricämie
PRPS-bedingte Gicht
Phosphoribosylpyrophosphat-Synthetase-Überaktivität

Referenzen:

1.

Moro F et al. (1991) Does allopurinol affect the progression of familial juvenile gouty nephropathy?

external link
2.

Greene ML et al. (1972) Hypouricemia due to isolated renal tubular defect. Dalmatian dog mutation in man.

external link
3.

Albertini RJ et al. (1973) Somatic cell mutation. Detection and quantification of x-ray-induced mutation in cultured, diploid human fibroblasts.

external link
4.

Khachadurian AK et al. (1973) Hypouricemia due to renal uricosuria. A case study.

external link
5.

Fujimoto WY et al. (1968) Biochemical diagnosis of an X-linked disease in utero.

external link
6.

van der Zee SP et al. (1968) Megaloblastic anaemia in the Lesch-Nyhan syndrome.

external link
7.

Takeda E et al. (1985) Hereditary renal hypouricemia in children.

external link
8.

Andrés A et al. (1987) Partial deficit of hypoxanthine guanine phosphoribosyl transferase presenting as acute renal failure.

external link
9.

Page T et al. (1987) Syndrome of mild mental retardation, spastic gait, and skeletal malformations in a family with partial deficiency of hypoxanthine-guanine phosphoribosyltransferase.

external link
10.

Gafter U et al. (1989) Hypouricemia due to familial isolated renal tubular uricosuria. Evaluation with the combined pyrazinamide-probenecid test.

external link
11.

Sanberg PR et al. (1990) Neural basis of behavior: animal models of human conditions.

external link
12.

Moro F et al. (1991) Familial juvenile gouty nephropathy with renal urate hypoexcretion preceding renal disease.

external link
13.

Yokota N et al. (1991) Autosomal dominant transmission of gouty arthritis with renal disease in a large Japanese family.

external link
14.

Boyle JA et al. (1970) Lesch-Nyhan syndrome: preventive control by prenatal diagnosis.

external link
15.

Yukawa T et al. (1992) A female patient with Lesch-Nyhan syndrome.

external link
16.

Akaoka I et al. (1975) Familial hypouricaemia due to renal tubular defect of urate transport.

external link
17.

Ghangas GS et al. (1975) Radioimmune determination of hypoxanthine phosphoribosyltransferase crossreacting material in erythrocytes of Lesch-Nyhan patients.

external link
18.

Upchurch KS et al. (1975) Hypoxanthine phosphoribosyltransferase deficiency: association of reduced catalytic activity with reduced levels of immunologically detectable enzyme protein.

external link
19.

Benjamin D et al. (1978) Familial hypouricemia due to isolated renal tubular abnormality.

external link
20.

Bakay B et al. (1979) Utilization of purines by an HPRT variant in an intelligent, nonmutilative patient with features of the Lesch-Nyhan syndrome.

external link
21.

Frank M et al. (1979) Familial renal hypouricaemia: two additional cases with uric acid lithiasis.

external link
22.

Piret SE et al. (2011) Genome-wide study of familial juvenile hyperuricaemic (gouty) nephropathy (FJHN) indicates a new locus, FJHN3, linked to chromosome 2p22.1-p21.

external link
23.

Bernascone I et al. (2010) A transgenic mouse model for uromodulin-associated kidney diseases shows specific tubulo-interstitial damage, urinary concentrating defect and renal failure.

external link
24.

Zaucke F et al. (2010) Uromodulin is expressed in renal primary cilia and UMOD mutations result in decreased ciliary uromodulin expression.

external link
25.

Dahan K et al. (2003) A cluster of mutations in the UMOD gene causes familial juvenile hyperuricemic nephropathy with abnormal expression of uromodulin.

external link
26.

Ceballos-Picot I et al. (2009) Hypoxanthine-guanine phosphoribosyl transferase regulates early developmental programming of dopamine neurons: implications for Lesch-Nyhan disease pathogenesis.

external link
27.

Belostotsky R et al. (2011) Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome.

external link
28.

Köttgen A et al. (2013) Genome-wide association analyses identify 18 new loci associated with serum urate concentrations.

external link
29.

Woodward OM et al. (2011) ABCG transporters and disease.

external link
30.

Cheng LS et al. (2004) Genomewide scan for gout in taiwanese aborigines reveals linkage to chromosome 4q25.

external link
31.

NEEL JV et al. (1965) STUDIES ON HYPERURICEMIA. II. A RECONSIDERATION OF THE DISTRIBUTION OF SERUM URIC ACID VALUES IN THE FAMILIES OF SMYTH, COTTERMAN, AND FREYBERG.

external link
32.

None (1960) Heredity in primary gout.

external link
33.

HAUGE M et al. (1955) Heredity in gout and hyperuricemia.

external link
34.

Healey LA et al. (1967) Hyperuricemia in Filipinos: interaction of heredity and environment.

external link
35.

None (1979) Genetics of hyperuricemia in families with gout.

external link
36.

Fu R et al. (2015) Clinical severity in Lesch-Nyhan disease: the role of residual enzyme and compensatory pathways.

external link
37.

Sarafoglou K et al. (2010) Lesch-Nyhan variant syndrome: variable presentation in 3 affected family members.

external link
38.

Cristini S et al. (2010) Human neural stem cells: a model system for the study of Lesch-Nyhan disease neurological aspects.

external link
39.

DUNCAN H et al. (1960) Gout, familial hypericaemia, and renal disease.

external link
40.

Hladnik U et al. (2008) Variable expression of HPRT deficiency in 5 members of a family with the same mutation.

external link
41.

Ichida K et al. (2008) Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese.

external link
42.

Tanaka M et al. (2003) Two male siblings with hereditary renal hypouricemia and exercise-induced ARF.

external link
43.

Enomoto A et al. (2002) Molecular identification of a renal urate anion exchanger that regulates blood urate levels.

external link
44.

None (1997) The recognition of Lesch-Nyhan syndrome as an inborn error of purine metabolism.

external link
45.

Jinnah HA et al. (1994) Dopamine deficiency in a genetic mouse model of Lesch-Nyhan disease.

external link
46.

Hedley JM et al. (1980) Familial hypouricaemia associated with renal tubular uricosuria and uric acid calculi: case report.

external link
47.

Weitz R et al. (1980) Hereditary renal hypouricemia. Isolated tubular defect of urate reabsorption.

external link
48.

Shichiri M et al. (1982) Hypouricemia due to an increment in renal tubular urate secretion.

external link
49.

Harkness RA et al. (1983) Xanthine oxidase deficiency and 'Dalmatian' hypouricaemia: incidence and effect of exercise.

external link
50.

Gibbs DA et al. (1984) First-trimester diagnosis of Lesch-Nyhan syndrome.

external link
51.

Wilson JM et al. (1986) A molecular survey of hypoxanthine-guanine phosphoribosyltransferase deficiency in man.

external link
52.

Lloyd KG et al. (1981) Biochemical evidence of dysfunction of brain neurotransmitters in the Lesch-Nyhan syndrome.

external link
53.

Rosenbloom FM et al. (1967) Inherited disorder of purine metabolism. Correlation between central nervous system dysfunction and biochemical defects.

external link
54.

Seegmiller JE et al. (1967) Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis.

external link
55.

Henderson JF et al. (1969) Inheritance of purine phosphoribosyltransferases in man.

external link
56.

Greene ML et al. (1970) Hypoxanthine-guanine phosphoribosyltransferase deficiency and Xg blood group.

external link
57.

Nyhan WL et al. (1970) Hemizygous expression of glucose-6-phosphate dehydrogenase in erythrocytes of heterozygotes for the Lesch-Nyhan syndrome.

external link
58.

Yü TF et al. (1972) Rarity of X-linked partial hypoxanthine-guanine phosphoribosyltransferase deficiency in a large gouty population.

external link
59.

Migeon BR et al. (1968) X-linked hypoxanthine-guanine phosphoribosyl transferase deficiency: heterozygote has two clonal populations.

external link
60.

Silvers DN et al. (1972) Detection of heterozygote in Lesch-Nyhan disease by hair-root analysis.

external link
61.

McDonald JA et al. (1971) Lesch-Nyhan syndrome: altered kinetic properties of mutant enzyme.

external link
62.

Nabholz M et al. (1969) Genetic analysis with human--mouse somatic cell hybrids.

external link
63.

Kelley WN et al. (1967) A specific enzyme defect in gout associated with overproduction of uric acid.

external link
64.

Strauss GH et al. (1980) An enumerative assay of purine analogue resistant lymphocytes in women heterozygous for the Lesch-Nyhan Mutation.

external link
65.

Francke U et al. (1976) The occurrence of new mutants in the X-linked recessive Lesch-Nyhan disease.

external link
66.

Gartler SM et al. (1975) Half chromatid mutations: transmission in humans?

external link
67.

None (1977) A probable sex difference in some mutation rates.

external link
68.

Morton NE et al. (1977) Genetic epidemiology of Lesch-Nyhan disease.

external link
69.

Vylet'al P et al. (2006) Alterations of uromodulin biology: a common denominator of the genetically heterogeneous FJHN/MCKD syndrome.

external link
70.

Rampoldi L et al. (2003) Allelism of MCKD, FJHN and GCKD caused by impairment of uromodulin export dynamics.

external link
71.

Turner JJ et al. (2003) UROMODULIN mutations cause familial juvenile hyperuricemic nephropathy.

external link
72.

Hart TC et al. (2002) Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy.

external link
73.

Stibůrková B et al. (2000) Familial juvenile hyperuricemic nephropathy: localization of the gene on chromosome 16p11.2-and evidence for genetic heterogeneity.

external link
74.

McBride MB et al. (1998) Presymptomatic detection of familial juvenile hyperuricaemic nephropathy in children.

external link
75.

Zivná M et al. (2009) Dominant renin gene mutations associated with early-onset hyperuricemia, anemia, and chronic kidney failure.

external link
76.

Martinon F et al. (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome.

external link
77.

Stacey JM et al. (2003) Genetic mapping studies of familial juvenile hyperuricemic nephropathy on chromosome 16p11-p13.

external link
78.

Fairbanks LD et al. (2002) Early treatment with allopurinol in familial juvenile hyerpuricaemic nephropathy (FJHN) ameliorates the long-term progression of renal disease.

external link
79.

Kamatani N et al. (2000) Localization of a gene for familial juvenile hyperuricemic nephropathy causing underexcretion-type gout to 16p12 by genome-wide linkage analysis of a large family.

external link
80.

McBride MB et al. (1997) Familial renal disease or familial juvenile hyperuricaemic nephropathy?

external link
81.

Saeki A et al. (1995) Newly discovered familial juvenile gouty nephropathy in a Japanese family.

external link
82.

Simmonds HA et al. (1980) Familial gout and renal failure in young women.

external link
83.

Massari PU et al. (1980) Familial hyperuricemia and renal disease.

external link
84.

Leumann EP et al. (1983) Familial nephropathy with hyperuricemia and gout.

external link
85.

Van Goor W et al. (1971) An unusual form of renal disease associated with gout and hypertension.

external link
86.

Cameron JS et al. (1990) Precocious familial gout.

external link
87.

Hodanová K et al. (2005) Mapping of a new candidate locus for uromodulin-associated kidney disease (UAKD) to chromosome 1q41.

external link
88.

Stibůrková B et al. (2003) Familial juvenile hyperuricaemic nephropathy (FJHN): linkage analysis in 15 families, physical and transcriptional characterisation of the FJHN critical region on chromosome 16p11.2 and the analysis of seven candidate genes.

external link
89.

Matsuo H et al. (2009) Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population.

external link
90.

Dehghan A et al. (2008) Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study.

external link
91.

Francke U et al. (1977) Answer to criticism of Morton and Lalouel.

external link
92.

HOEFNAGEL D et al. (1965) HEREDITARY CHOREOATHETOSIS, SELF-MUTILATION AND HYPERURICEMIA IN YOUNG MALES.

external link
93.

LESCH M et al. (1964) A FAMILIAL DISORDER OF URIC ACID METABOLISM AND CENTRAL NERVOUS SYSTEM FUNCTION.

external link
94.

Srivastava T et al. (2002) Childhood hyperuricemia and acute renal failure resulting from a missense mutation in the HPRT gene.

external link
95.

Zoref-Shani E et al. (2000) Kelley-Seegmiller syndrome due to a unique variant of hypoxanthine-guanine phosphoribosyltransferase: reduced affinity for 5-phosphoribosyl-1-pyrophosphate manifested only at low, physiological substrate concentrations.

external link
96.

Graham GW et al. (1996) Prenatal diagnosis by enzyme analysis in 15 pregnancies at risk for the Lesch-Nyhan syndrome.

external link
97.

Wong DF et al. (1996) Dopamine transporters are markedly reduced in Lesch-Nyhan disease in vivo.

external link
98.

Nyhan WL et al. (1996) New approaches to understanding Lesch-Nyhan disease.

external link
99.

Ernst M et al. (1996) Presynaptic dopaminergic deficits in Lesch-Nyhan disease.

external link
Update: 14. August 2020
Copyright © 2005-2020 Zentrum für Nephrologie und Stoffwechsel, Dr. Mato Nagel
Albert-Schweitzer-Ring 32, D-02943 Weißwasser, Deutschland, Tel.: +49-3576-287922, Fax: +49-3576-287944
Seitenüberblick | Webmail | Haftungsausschluss | Datenschutz