Molekulargenetisches Labor
Zentrum für Nephrologie und Stoffwechsel

Störungen des Phosphathaushaltes

Störunngen des Phosphathaushaltes umfassen Erkrankungen mit Hyper und Hypophosphatämie. In ersterem Falle liegen massive renale Phosphatverluste vor (Phosphatdiabetes) und die Folge sind Störungen in der Hartsubstanz der Knochen (Rachitis, Osteomalazie, Osteoporose und Osteoglophonie). Im zweiten Falle funktioniert die renale Ausscheidung nicht so optimal dass es zu einer Phosphatretention kommt. Diese führt dann zu Knochenverönderungen im Sinne einer vermehrten Hartsubstanz (Osteopetrose) oder subperiostalen Verkalkungen. Es kann aber auch zu extraossären Verkalkungen (Calcinose) kommen.

Pathogenese

Das Flussdiagramm verdeutlicht den normalen Phosphatstoffwechsel, der für eine Stabilisierung des Phosphathaushaltes führt (Homöostase). In unserer Nahrung nehmen wir Phosphat im Überschuss auf. Das überschüssige Phosphat wird vor allem renal ausgeschieden. Mit der Menge des in der Niere zurück gewonnenen Phosphates wird die Phosphathomöostase gesteuert. Da bei einer normalen Ernährung etwa 80% des fitrierten Phosphates rückresorbiert wird bleibt normalerweise ein weiter regulatorisher Spielraum die Homöostase mit unterschiedlichem Phosphatangebot in der Nahrung konstant zu halten.

G a2 extrazellulaer Knochen 85% a0 Plasma 2-3% a2->a0 a0->a2 a1 intrazellulaer organisches Phosphat ~10% a0->a1 b0 Renal Reabsorption a0->b0 a1->a0 b1 Phosphatonin (FGF23,FRP4,MEPE) b1->b0 - b2 Parathormon (PTH) end Ausscheidung b0->end b2->b0 - b3 Dopamin b3->b0 - start Aufnahme start->a0
Phosphat-Stoffwechsel

Da die renale Reabsorption der wichtigste Kontrollpunkt der Phosphathomöostase ist, greifen auch hier die meisten Regulationsmechanismen. Hemmend auf die Rückresorption und damit zu einer verstärkten renalen Ausscheidung führend wirken die in der Grafik rot markierten Mechanismen. Die Störung Störungen dieser Regulationsmechanismen müssen entweder zu excessiven Phosphatverlusten oder zu übermäßiger Phosphatretention führen.

Management

Weil Hypo- und Hyperphosphatämie unterschiedlichen behandelt werden, ist das Management in den entsprechenden Abschnitten abgehandelt.

Gliederung

Erbliche Stoffwechselerkrankungen
Acoeruloplasminämie/Hypocoeruloplasminämie
Coenzym Q10-Mangel
Erbliche Fettstoffwechselerkrankungen
Genetisch bedingte Hyperbilirubinämie
Glycolipidose
HADH-Mangel
Hyperkatabole Hypoproteinämie
Hyperzinkämie und Hypercalprotectinämie
Hypomagnesiämie
Hypomethylierungs-Syndrom
Kongenitale Glykosilierungsstörung
Lebensmittelunverträglichkeiten
Lysosomale Speicherkrankheiten
MELAS-Syndrom
Methioninadenosyltransferase-Mangel
Methylmalonazidurie
Störungen des Cobalaminstoffwechsels
Störungen des Eisenstoffwechsels
Störungen des Glucosestoffwechsels
Störungen des Harnstoffzyklus
Störungen des Harnsäurestoffwechsels
Störungen des Phosphathaushaltes
Hyperphosphatämische familiäre Tumorcalcinose
FGF23
GALNT3
KL
Hypophosphatasie
Adulte Hypophosphatasie
ALPL
Infantile Hypophosphatasie
ALPL
Kindliche Hypophosphatasie
ALPL
Odontohypophosphatasie
ALPL
Hypophosphatämische Knochen- und Nierenerkrankung
FGF23-induzierte hypophosphatämische Rachitis
Autosomal dominante hypophosphatämische Rachitis
FGF23
Autosomal rezessive hypophosphatämische Rachitis Typ 1
DMP1
Autosomal rezessive hypophosphatämische Rachitis Typ 2
ENPP1
X-chromosomal dominante hypophosphatämische Rachitis
PHEX
Hypophosphatämische Rachitis mit Hyperparathyroidismus
KL
Hypophosphatämische Rachitis vom Fanconi-Typ
Hypophosphatämie mit Nephrolithiasis und Osteoporose Typ 1
SLC34A1
X-chromosomale hypophosphatämische Rachitis
CLCN5
OCRL
Osteoglophone Dysplasie
FGFR1
Raine-Syndrome
FAM20C
Störungen der renalen Phosphattransporter
Hypophosphatämie mit Nephrolithiasis und Osteoporose Typ 1
SLC34A1
Hypophosphatämie mit Nephrolithiasis und Osteoporose Typ 2
SLC9A3R1
Hypophosphatämische Rachitis mit Hypercalciurie
SLC34A3
Idiopathische Kalzifikation der Basalganglien 1
SLC20A2
X-chromosomal dominante hypophosphatämische Rachitis
PHEX

Referenzen:

1.

Steinherz R et al. (1985) Elevated serum calcitriol concentrations do not fall in response to hyperphosphatemia in familial tumoral calcinosis.

[^]
2.

Lyles KW et al. (1985) Genetic transmission of tumoral calcinosis: autosomal dominant with variable clinical expressivity.

[^]
3.

Slavin RE et al. (1993) Familial tumoral calcinosis. A clinical, histopathologic, and ultrastructural study with an analysis of its calcifying process and pathogenesis.

[^]
4.

MCPHAUL JJ et al. (1961) Heterotopic calcification, hyperphosphatemia and angioid streaks of the retina.

[^]
5.

Topaz O et al. (2004) Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis.

[^]
6.

Frishberg Y et al. (2005) Identification of a recurrent mutation in GALNT3 demonstrates that hyperostosis-hyperphosphatemia syndrome and familial tumoral calcinosis are allelic disorders.

[^]
7.

Ichikawa S et al. (2005) A novel GALNT3 mutation in a pseudoautosomal dominant form of tumoral calcinosis: evidence that the disorder is autosomal recessive.

[^]
8.

Specktor P et al. (2006) Hyperphosphatemic familial tumoral calcinosis caused by a mutation in GALNT3 in a European kindred.

[^]
9.

Ichikawa S et al. (2006) Tumoral calcinosis presenting with eyelid calcifications due to novel missense mutations in the glycosyl transferase domain of the GALNT3 gene.

[^]
10.

Ichikawa S et al. (2010) Clinical variability of familial tumoral calcinosis caused by novel GALNT3 mutations.

[^]
11.

Ichikawa S et al. (2007) A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis.

[^]
12.

Abbud Y et al. (1979) Scintiscans of two siblings with tumoral calcinosis.

[^]
13.

Pursley TV et al. (1979) Cutaneous manifestations of tumoral calcinosis.

[^]
14.

None (1978) Tumoral calcinosis. A clinical and pathological study of eleven unreported cases in Turkey.

[^]
15.

Wilson MP et al. (1989) Hyperphosphatemia associated with cortical hyperostosis and tumoral calcinosis.

[^]
16.

Witcher SL et al. (1989) Tumoral calcinosis with unusual dental radiographic findings.

[^]
17.

Gregosiewicz A et al. (1989) Tumoral calcinosis: successful medical treatment. A case report.

[^]
18.

Talab YA et al. () Hyperostosis with hyperphosphatemia: a case report and review of the literature.

[^]
19.

Davies M et al. (1987) Tumoral calcinosis: clinical and metabolic response to phosphorus deprivation.

[^]
20.

Mozaffarian G et al. (1972) Treatment of tumoral calcinosis with phosphorus deprivation.

[^]
21.

Altman HS et al. (1971) Cortical hyperostosis with hyperphosphatemia.

[^]
22.

James AE et al. (1969) Roentgen findings in pseudoxanthoma elasticum (PXE).

[^]
23.

Melhem RE et al. (1970) Cortical hyperostosis with hyperphosphatemia: a new syndrome?

[^]
24.

Najjar SS et al. (1968) Tumoral calcinosis and pseudoxanthoma elasticum.

[^]
25.

McClatchie S et al. (1969) Tumoral calcinosis--an unrecognized disease.

[^]
26.

None () [A familial form of lipocalcigranulomatosis with arterial calcinosis].

[^]
27.

None (1966) Tumoural calcinosis.

[^]
28.

None (1966) Calcifying collagenolysis (tumoural calcinosis).

[^]
29.

Harkess JW et al. (1967) Tumoral calcinosis. A report of six cases.

[^]
30.

Mitnick PD et al. (1980) Calcium and phosphate metabolism in tumoral calcinosis.

[^]
31.

Mikati MA et al. (1981) The syndrome of hyperostosis and hyperphosphatemia.

[^]
32.

Clarke E et al. (1984) Tumoral calcinosis, diaphysitis, and hyperphosphatemia.

[^]
33.

Zerwekh JE et al. (1980) Tumoral calcinosis: evidence for concurrent defects in renal tubular phosphorus transport and in 1 alpha,25-dihydroxycholecalciferol synthesis.

[^]
34.

Prince MJ et al. (1982) Hyperphosphatemic tumoral calcinosis: association with elevation of serum 1,25-dihydroxycholecalciferol concentrations.

[^]
35.

Chausmer A et al. (1982) Phosphate depletion therapy in two ectopic calcification syndromes.

[^]
36.

Balachandran S et al. (1980) Tumoral calcinosis: scintigraphic studies of an affected family.

[^]
37.

None (1997) Hyperostosis with hyperphosphatemia: evidence of familial occurrence and association with tumoral calcinosis.

[^]
38.

Adams WM et al. (1999) Familial tumoral calcinosis: association with cerebral and peripheral aneurysm formation.

[^]
39.

BARTON DL et al. (1961) Tumoral calcinosis. Report of three cases and review of the literature.

[^]
40.

ALTMAN HS et al. (1961) Chronic polyostotic periostitis of unknown etiology.

[^]
41.

Benet-Pagès A et al. (2005) An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia.

[^]
42.

Chefetz I et al. (2005) A novel homozygous missense mutation in FGF23 causes Familial Tumoral Calcinosis associated with disseminated visceral calcification.

[^]
43.

Goldbloom RB et al. (1966) Idiopathic periosteal hyperostosis with dysproteinemia. A new clinical entity.

[^]
44.

None (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23.

[^]
45.

WINTERS RW et al. (1958) A genetic study of familial hypophosphatemia and vitamin D resistant rickets with a review of the literature.

[^]
46.

Econs MJ et al. (1998) A PHEX gene mutation is responsible for adult-onset vitamin D-resistant hypophosphatemic osteomalacia: evidence that the disorder is not a distinct entity from X-linked hypophosphatemic rickets.

[^]
47.

Sabbagh Y et al. (2000) PHEXdb, a locus-specific database for mutations causing X-linked hypophosphatemia.

[^]
48.

Quarles LD et al. (2001) Pathophysiology of X-linked hypophosphatemia, tumor-induced osteomalacia, and autosomal dominant hypophosphatemia: a perPHEXing problem.

[^]
49.

Mäkitie O et al. (2003) Early treatment improves growth and biochemical and radiographic outcome in X-linked hypophosphatemic rickets.

[^]
50.

BLACKARD WG et al. (1962) Familial hypophosphatemia. Report of a case, with observations regarding pathogenesis.

[^]
51.

BURNETT CH et al. (1964) VITAMIN D-RESISTANT RICKETS. ANALYSIS OF TWENTY-FOUR PEDIGREES WITH HEREDITARY AND SPORADIC CASES.

[^]
52.

Savio RM et al. (2004) Parathyroidectomy for tertiary hyperparathyroidism associated with X-linked dominant hypophosphatemic rickets.

[^]
53.

Cho HY et al. (2005) A clinical and molecular genetic study of hypophosphatemic rickets in children.

[^]
54.

Makras P et al. (2008) Normal growth and muscle dysfunction in X-linked hypophosphatemic rickets associated with a novel mutation in the PHEX gene.

[^]
55.

Gaucher C et al. (2009) PHEX analysis in 118 pedigrees reveals new genetic clues in hypophosphatemic rickets.

[^]
56.

Levine BS et al. (2009) The journey from vitamin D-resistant rickets to the regulation of renal phosphate transport.

[^]
57.

Liu ES et al. (2011) Calcitonin administration in X-linked hypophosphatemia.

[^]
Update: 29. April 2019