Molekulargenetisches Labor
Zentrum für Nephrologie und Stoffwechsel
Moldiag Erkrankungen Gene Support Kontakt

Hoch-affiner Nerven-Wachstumsfaktor-Rezeptor

Das NTRK1-Gen kodiert eine Tyrosinkinase-Rezeptor, der in der Signaltransduktion für die Entwicklung von Nervenfaser verantwortlich ist. Mutationen verursachen autosomal dominante kongenitale Schmerzunempfindlichkeit mit Anhidrose. Chimäre Genfusionen (NTRK1/TFG) führen zu medullärem Schilddrüsenkarzinom.

Gentests:

Klinisch Untersuchungsmethoden Familienuntersuchung
Bearbeitungszeit 5 Tage
Probentyp genomische DNS
Klinisch Untersuchungsmethoden Hochdurchsatz-Sequenzierung
Bearbeitungszeit 25 Tage
Probentyp genomische DNS
Forschung Untersuchungsmethoden Direkte Sequenzierung der proteinkodierenden Bereiche eines Gens
Bearbeitungszeit 25 Tage
Probentyp genomische DNS

Verknüpfte Erkrankungen:

Kongenitale Schmerzunempfindlichkeit mit Anhidrose
NTRK1
Familiäres meduläres Schilddrüsenkarzinom
NTRK1
RET

Referenzen:

1.

Indo Y et al. (2001) Congenital insensitivity to pain with anhidrosis (CIPA): novel mutations of the TRKA (NTRK1) gene, a putative uniparental disomy, and a linkage of the mutant TRKA and PKLR genes in a family with CIPA and pyruvate kinase deficiency.

external link
2.

None (1996) p75NTR: a receptor after all.

external link
3.

Greco A et al. (1996) Genomic organization of the human NTRK1 gene.

external link
4.

Carter BD et al. (1997) Neurotrophins live or let die: does p75NTR decide?

external link
5.

Greco A et al. (1999) A novel NTRK1 mutation associated with congenital insensitivity to pain with anhidrosis.

external link
6.

Yotsumoto S et al. (1999) A novel point mutation affecting the tyrosine kinase domain of the TRKA gene in a family with congenital insensitivity to pain with anhidrosis.

external link
7.

Mardy S et al. (1999) Congenital insensitivity to pain with anhidrosis: novel mutations in the TRKA (NTRK1) gene encoding a high-affinity receptor for nerve growth factor.

external link
8.

Miura Y et al. (2000) Mutation and polymorphism analysis of the TRKA (NTRK1) gene encoding a high-affinity receptor for nerve growth factor in congenital insensitivity to pain with anhidrosis (CIPA) families.

external link
9.

Miura Y et al. (2000) Complete paternal uniparental isodisomy for chromosome 1 revealed by mutation analyses of the TRKA (NTRK1) gene encoding a receptor tyrosine kinase for nerve growth factor in a patient with congenital insensitivity to pain with anhidrosis.

external link
10.

Bibel M et al. (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system.

external link
11.

Mardy S et al. (2001) Congenital insensitivity to pain with anhidrosis (CIPA): effect of TRKA (NTRK1) missense mutations on autophosphorylation of the receptor tyrosine kinase for nerve growth factor.

external link
12.

Houlden H et al. (2001) A novel TRK A (NTRK1) mutation associated with hereditary sensory and autonomic neuropathy type V.

external link
13.

Chuang HH et al. (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition.

external link
14.

Deppmann CD et al. (2008) A model for neuronal competition during development.

external link
15.

None (2001) Molecular basis of congenital insensitivity to pain with anhidrosis (CIPA): mutations and polymorphisms in TRKA (NTRK1) gene encoding the receptor tyrosine kinase for nerve growth factor.

external link
16.

Toscano E et al. (2002) No mutation in the TRKA (NTRK1) gene encoding a receptor tyrosine kinase for nerve growth factor in a patient with hereditary sensory and autonomic neuropathy type V.

external link
17.

Miranda C et al. (2002) The M581V mutation, associated with a mild form of congenital insensitivity to pain with anhidrosis, causes partial inactivation of the NTRK1 receptor.

external link
18.

Kuruvilla R et al. (2004) A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling.

external link
19.

Counts SE et al. (2004) Reduction of cortical TrkA but not p75(NTR) protein in early-stage Alzheimer's disease.

external link
20.

Mulloy JC et al. (2005) AML1-ETO fusion protein up-regulates TRKA mRNA expression in human CD34+ cells, allowing nerve growth factor-induced expansion.

external link
21.

Mutoh T et al. (2005) Impairment of Trk-neurotrophin receptor by the serum of a patient with subacute sensory neuropathy.

external link
22.

Lambiase A et al. (2005) Molecular basis for keratoconus: lack of TrkA expression and its transcriptional repression by Sp3.

external link
23.

Wehrman T et al. (2007) Structural and mechanistic insights into nerve growth factor interactions with the TrkA and p75 receptors.

external link
24.

Ugolini G et al. (2007) The function neutralizing anti-TrkA antibody MNAC13 reduces inflammatory and neuropathic pain.

external link
25.

Suriu C et al. (2009) Skoura - a genetic island for congenital insensitivity to pain and anhidrosis among Moroccan Jews, as determined by a novel mutation in the NTRK1 gene.

external link
26.

Nikoletopoulou V et al. (2010) Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not.

external link
27.

Greco A et al. (1993) Characterization of the NTRK1 genomic region involved in chromosomal rearrangements generating TRK oncogenes.

external link
28.

Robinson LL et al. (2003) The human fetal testis is a site of expression of neurotrophins and their receptors: regulation of the germ cell and peritubular cell population.

external link
29.

Smeyne RJ et al. (1994) Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene.

external link
30.

Indo Y et al. (1996) Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis.

external link
31.

Shatzky S et al. (2000) Congenital insensitivity to pain with anhidrosis (CIPA) in Israeli-Bedouins: genetic heterogeneity, novel mutations in the TRKA/NGF receptor gene, clinical findings, and results of nerve conduction studies.

external link
32.

Hepburn L et al. (2014) Innate immunity. A Spaetzle-like role for nerve growth factor β in vertebrate immunity to Staphylococcus aureus.

external link
33.

Gimm O et al. (1999) Mutation analysis reveals novel sequence variants in NTRK1 in sporadic human medullary thyroid carcinoma.

external link
34.

Low PA et al. (1978) Congenital sensory neuropathy with selective loss of small myelinated fibers.

external link
35.

Cordon-Cardo C et al. (1991) The trk tyrosine protein kinase mediates the mitogenic properties of nerve growth factor and neurotrophin-3.

external link
36.

Loeb DM et al. (1991) The trk proto-oncogene rescues NGF responsiveness in mutant NGF-nonresponsive PC12 cell lines.

external link
37.

Morris CM et al. (1991) Localization of the TRK proto-oncogene to human chromosome bands 1q23-1q24.

external link
38.

Kaplan DR et al. (1991) The trk proto-oncogene product: a signal transducing receptor for nerve growth factor.

external link
39.

Hempstead BL et al. (1991) High-affinity NGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor.

external link
40.

Miozzo M et al. (1990) Human TRK proto-oncogene maps to chromosome 1q32-q41.

external link
41.

Coulier F et al. (1989) Mechanism of activation of the human trk oncogene.

external link
42.

Bongarzone I et al. (1989) High frequency of activation of tyrosine kinase oncogenes in human papillary thyroid carcinoma.

external link
43.

Martin-Zanca D et al. (1989) Molecular and biochemical characterization of the human trk proto-oncogene.

external link
44.

Donaghy M et al. (1987) Hereditary sensory neuropathy with neurotrophic keratitis. Description of an autosomal recessive disorder with a selective reduction of small myelinated nerve fibres and a discussion of the classification of the hereditary sensory neuropathies.

external link
45.

Martin-Zanca D et al. (1986) Molecular characterization of the human trk oncogene.

external link
46.

Mitra G et al. (1987) Identification and biochemical characterization of p70TRK, product of the human TRK oncogene.

external link
47.

Greco A et al. (1995) The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain.

external link
48.

Butti MG et al. (1995) A sequence analysis of the genomic regions involved in the rearrangements between TPM3 and NTRK1 genes producing TRK oncogenes in papillary thyroid carcinomas.

external link
49.

Weier HU et al. (1995) Rapid physical mapping of the human trk protooncogene (NTRK1) to human chromosome 1q21-q22 by P1 clone selection, fluorescence in situ hybridization (FISH), and computer-assisted microscopy.

external link
50.

Ip NY et al. (1993) Similarities and differences in the way neurotrophins interact with the Trk receptors in neuronal and nonneuronal cells.

external link
51.

Ehrhard PB et al. (1993) Expression of functional trk protooncogene in human monocytes.

external link
52.

Orphanet article

Orphanet ID 123961 external link
53.

NCBI article

NCBI 4914 external link
54.

OMIM.ORG article

Omim 191315 external link
Update: 14. August 2020
Copyright © 2005-2024 Zentrum für Nephrologie und Stoffwechsel, Dr. Mato Nagel
Albert-Schweitzer-Ring 32, D-02943 Weißwasser, Deutschland, Tel.: +49-3576-287922, Fax: +49-3576-287944
Seitenüberblick | Webmail | Haftungsausschluss | Datenschutz | Impressum