| Klinisch | Untersuchungsmethoden | Familienuntersuchung |
| Bearbeitungszeit | 5 Tage | |
| Probentyp | genomische DNS |
| Klinisch | Untersuchungsmethoden | Hochdurchsatz-Sequenzierung |
| Bearbeitungszeit | 25 Tage | |
| Probentyp | genomische DNS |
| Klinisch | Untersuchungsmethoden | Direkte Sequenzierung der proteinkodierenden Bereiche eines Gens |
| Bearbeitungszeit | 25 Tage | |
| Probentyp | genomische DNS |
| Klinisch | Untersuchungsmethoden | Multiplex ligationsabhängige Amplifikation |
| Bearbeitungszeit | 25 Tage | |
| Probentyp | genomische DNS |
| 2. |
Ferguson RJ et al. (1998) A new genetic defect in human CYP2C19: mutation of the initiation codon is responsible for poor metabolism of S-mephenytoin.
|
| 4. |
Kaneko A et al. (1997) High frequencies of CYP2C19 mutations and poor metabolism of proguanil in Vanuatu.
|
| 5. |
Daly AK et al. (1996) Nomenclature for human CYP2D6 alleles.
|
| 6. |
Gray IC et al. (1995) A 2.4-megabase physical map spanning the CYP2C gene cluster on chromosome 10q24.
|
| 7. |
Wrighton SA et al. (1993) Isolation and characterization of human liver cytochrome P450 2C19: correlation between 2C19 and S-mephenytoin 4'-hydroxylation.
|
| 8. |
de Morais SM et al. (1994) The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans.
|
| 9. |
Goldstein JA et al. (1994) Evidence that CYP2C19 is the major (S)-mephenytoin 4'-hydroxylase in humans.
|
| 10. |
De Morais SM et al. (1994) Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese.
|
| 11. |
Inoue K et al. (1994) Fluorescence in situ hybridization analysis of chromosomal localization of three human cytochrome P450 2C genes (CYP2C8, 2C9, and 2C10) at 10q24.1.
|
| 12. |
Richardson TH et al. (1995) A universal approach to the expression of human and rabbit cytochrome P450s of the 2C subfamily in Escherichia coli.
|
| 13. |
Nebert DW et al. (1987) The P450 gene superfamily: recommended nomenclature.
|
| 14. |
Black SD et al. (1987) P-450 cytochromes: structure and function.
|
| 15. |
Meehan RR et al. (1988) Chromosomal organization of the cytochrome P450-2C gene family in the mouse: a locus associated with constitutive aryl hydrocarbon hydroxylase.
|
| 16. |
Thum T et al. (2000) Gene expression in distinct regions of the heart.
|
| 17. |
Meehan RR et al. (1988) Human cytochrome P-450 PB-1: a multigene family involved in mephenytoin and steroid oxidations that maps to chromosome 10.
|
| 18. |
Shephard EA et al. (1989) Cloning, expression and chromosomal localization of a member of the human cytochrome P450IIC gene sub-family.
|
| 19. |
Gough AC et al. (1989) An XmnI RFLP detected with a cDNA probe for the CYP2C gene locus on chromosome 10.
|
| 20. |
Romkes M et al. (1991) Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily.
|
| 21. |
Taubert D et al. (2009) Cytochrome P-450 polymorphisms and response to clopidogrel.
|
| 22. |
Wang SM et al. (2009) Frequencies of genotypes and alleles of the functional SNPs in CYP2C19 and CYP2E1 in mainland Chinese Kazakh, Uygur and Han populations.
|
| 23. |
Mega JL et al. (2009) Cytochrome p-450 polymorphisms and response to clopidogrel.
|
| 24. |
Simon T et al. (2009) Genetic determinants of response to clopidogrel and cardiovascular events.
|
| 26. |
Liou YH et al. (2006) The high prevalence of the poor and ultrarapid metabolite alleles of CYP2D6, CYP2C9, CYP2C19, CYP3A4, and CYP3A5 in Taiwanese population.
|
| 27. |
Ohkubo Y et al. (2006) Novel mutations in the cytochrome P450 2C19 gene: a pitfall of the PCR-RFLP method for identifying a common mutation.
|
| 28. |
Blaisdell J et al. (2002) Identification and functional characterization of new potentially defective alleles of human CYP2C19.
|
| 29. |
Ibeanu GC et al. (1998) An additional defective allele, CYP2C19*5, contributes to the S-mephenytoin poor metabolizer phenotype in Caucasians.
|