Molekulargenetische Diagnostik
Praxis Dr. Mato Nagel

Angiotensinogen

Die Beteiligung des AGT-Gens bei der Pathogenese von Bluthochdruck, hypertensiven Komplikationen und diabetischer Nephropathie wird diskutiert.

Epidemiologie

Die Mutation ist weltweit verbreitet. Die Häufigkeit des T-Allels wird bei Kaukasiern mit 36% angegeben. Es besteht ein signifikanter Rassenunterschied sowohl in der Häufgkeit des Auftretens wie auch in der Bedeutung für die Entwicklung der Hypertonie.

Genstruktur

Das Gen, welches Angiotensinogen kodiert, (AGT) umfasst etwa 12kb. Es ist aus 4 Exons aufgebaut und befindet sich auf dem Chromosom 1 (1q42-q43).

Phänotyp

Der Hypertonus ist eine weit verbreitete und durch viele genetische und Umweltfaktoren bedingte Erkrankung. Die Angiotensinogen-Mutation somit nicht die Hypertonus auslösende Mutation schlechthin, sondern besitzt eine wichtige modifizierende Bedeutung bei der Ausprägung. So scheint sich bei Trägern dieser Mutation der Hypertonus und die Mikroalbuminurie früher zu entwickeln. Dies könnte ein Indiz dafür sein, dass sich hypertensive Begleitschäden in Herz und Niere früher entwickeln, und das gerade diese Patienten von einer frühzeitigen ACE-Hemmer Therapie profitieren.

Pathologie

Das Angiotensinogen ist ein Peptidhormon, welches als Prohormon sezerniert und extrazellulär durch das Renin (REN) und das Angiotensin-Converting-Enzyme (ACE) aktiviert und damit in seinem Wirksamwerden reguliert wird.Das Renin-Angiotensin-System (RAS) ist entscheidend an der Blutdruckregulation beteiligt: Das aktivierte Angiotensinogen, das Angiotensin II, ist ein starker Vasokonstriktor und eine Stimulator der Aldosteronsynthese in den Nebennieren. In der Niere wird zudem die Mikrozirkulation und insbesondere die glomeruläre Filtrationsrate über den juxtaglomerulären Apparat gesteuert. Klinische Studien belegen gleichfalls die Bedeutung des RAS für die Entwicklung hypertensiver Folgeschäden.Beim Vorliegen einer AGT-M235T Mutation kommt es zur vermehrten Bildung von Angiotensinogen sowohl im Plasma, wie auch im Nierengewebe. Da sich die enzymatischen Aktivierungsstufen durch Proteinasen mit jeweils typischer Enzym-Kinetik vollziehen, bedeutet ein erhöhtes Substratangebot auch eine vermehrte Bildung von Reaktionsprodukten in Form des blutdrucksteigernden Angiotensin II. Hierin ist die molekulare Erklärung für das gehäufte Auftreten hypertensiver Erkrankungen beim Vorhandensein der Mutation zu sehen.

Untersuchungsstrategie

Hypertensive Personen mit erhöhtem Risiko hypertensiver Begleiterkrankungen bzw. positiver Familien-anamnese für diabetische und hypertensive Nephropathie.

Interpretation

Die Bedeutung der AGT-Mutationstestung besteht vor allem in der Prognoseabschätzung. Therapeutisch kann davon ausgegangen werden, dass Patienten mit einer M235T-Mutation vorrangig von einer ACE-Hemmer oder eine AT1-Blocker-Therapie profitieren.

Diagnostik:

Clinic Untersuchungsmethoden Familienuntersuchung
Bearbeitungszeit 5
Probentyp genomic DNA
Clinic Untersuchungsmethoden Direkte Sequenzierung der proteinkodierenden Bereiche eines Gens
Bearbeitungszeit 20
Probentyp genomic DNA
Clinic Untersuchungsmethoden Direkte Sequenzierung ausgewählter Gen-Abschnitte
Bearbeitungszeit 20
Probentyp genomic DNA
Clinic Untersuchungsmethoden Hochdurchsatz-Sequenzierung
Bearbeitungszeit 25
Probentyp genomic DNA

Krankheiten:

Diabetische Nephropathie
ACE
AGT
AKR1B1
Erblicher Bluthochdruck
ACE
ACE2
AGT
Benigne Hyperproreninämie
REN
Monogener Hypertonus
Apparenter Mineralocortocoid Exzess
HSD11B2
Glycocorticoid getriggerter Hypertonus
NR3C1
Hyperaldosteronismus
Conn-Syndrom
ATP1A1
ATP2B3
CACNA1D
CACNA1H
CTNNB1
KCNJ5
Glycocorticoid getriggerter Hypertonus
NR3C1
Hyperaldosteronismus Typ 1
CYP11B1
CYP11B2
Hyperaldosteronismus Typ 2
Hyperaldosteronismus Typ 3
KCNJ5
Hyperaldosteronismus Typ 4
CACNA1D
CACNA1H
Hypertonie-Brachydaktylie-Syndrom
PDE3A
Liddle-Syndrom
NEDD4
NEDD4L
NR3C2
OXSR1
SCNN1B
SCNN1G
STK39
Pseudohypoaldosteronismus
Pseudohypoaldosteronismus Typ 1
NR3C2
SCNN1A
SCNN1B
SCNN1G
Pseudohypoaldosteronismus Type 2
CUL3
KLHL3
WNK1
WNK4
VEGFC
Renotubuläre Dysgenesie
ACE
AGT
AGTR1
REN

Referenzen:

1.

Wang WY et al. (1999) Exclusion of angiotensinogen gene in molecular basis of human hypertension: sibpair linkage and association analyses in Australian anglo-caucasians.

[^]
2.

Nakajima T et al. (1999) Functional analysis of a mutation occurring between the two in-frame AUG codons of human angiotensinogen.

[^]
3.

Guo X et al. (1999) Evidence of a major gene effect for angiotensinogen among Nigerians.

[^]
4.

Azizi M et al. (2000) Influence of the M235T polymorphism of human angiotensinogen (AGT) on plasma AGT and renin concentrations after ethinylestradiol administration.

[^]
5.

Ding Y et al. (2001) Genetic evidence that lethality in angiotensinogen-deficient mice is due to loss of systemic but not renal angiotensinogen.

[^]
6.

Lalouel JM et al. (2001) Angiotensinogen in essential hypertension: from genetics to nephrology.

[^]
7.

Lovati E et al. (2001) Genetic polymorphisms of the renin-angiotensin-aldosterone system in end-stage renal disease.

[^]
8.

Pereira AC et al. (2001) Effect of race, genetic population structure, and genetic models in two-locus association studies: clustering of functional renin-angiotensin system gene variants in hypertension association studies.

[^]
9.

Nakajima T et al. (2002) Nucleotide diversity and haplotype structure of the human angiotensinogen gene in two populations.

[^]
10.

Kemper MJ et al. (2001) Antenatal oligohydramnios of renal origin: postnatal therapeutic and prognostic challenges.

[^]
11.

Nakajima T et al. (2002) Molecular cloning and functional analysis of a factor that binds to the proximal promoter of human angiotensinogen.

[^]
12.

Kim HS et al. (2002) Molecular phenotyping for analyzing subtle genetic effects in mice: application to an angiotensinogen gene titration.

[^]
13.

Lochard N et al. (2003) Brain-specific restoration of angiotensin II corrects renal defects seen in angiotensinogen-deficient mice.

[^]
14.

Brand E et al. (2002) Detection of putative functional angiotensinogen (AGT) gene variants controlling plasma AGT levels by combined segregation-linkage analysis.

[^]
15.

Sawathiparnich P et. al. (2003) Effect of combined AT1 receptor and aldosterone receptor antagonism on plasminogen activator inhibitor-1.

[^]
16.

TAKAHASHI E et al. (1957) The geographic distribution of cerebral hemorrhage and hypertension in Japan.

[^]
17.

None (1962) Diabetes mellitus: a "thrifty" genotype rendered detrimental by "progress"?

[^]
18.

SASAKI N et al. (1964) THE RELATIONSHIP OF SALT INTAKE TO HYPERTENSION IN THE JAPANESE.

[^]
19.

Tsai CT et al. (2004) Renin-angiotensin system gene polymorphisms and atrial fibrillation.

[^]
20.

Nakajima T et al. (2004) Natural selection and population history in the human angiotensinogen gene (AGT): 736 complete AGT sequences in chromosomes from around the world.

[^]
21.

Montiel M et al. (2005) Angiotensin II induces focal adhesion kinase/paxillin phosphorylation and cell migration in human umbilical vein endothelial cells.

[^]
22.

Lautrette A et al. (2005) Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach.

[^]
23.

Hillermann R et al. (2005) The Glu298Asp variant of the endothelial nitric oxide synthase gene is associated with an increased risk for abruptio placentae in pre-eclampsia.

[^]
24.

Gribouval O et al. (2005) Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis.

[^]
25.

Zhan Y et al. (2005) Ets-1 is a critical regulator of Ang II-mediated vascular inflammation and remodeling.

[^]
26.

Markovic D et al. (2005) Association of angiotensinogen gene polymorphisms with essential hypertension in African-Americans and Caucasians.

[^]
27.

Caruso-Neves C et al. (2005) Albumin endocytosis in proximal tubule cells is modulated by angiotensin II through an AT2 receptor-mediated protein kinase B activation.

[^]
28.

Gu CC et al. (2005) Haplotype association analysis of AGT variants with hypertension-related traits: the HyperGEN study.

[^]
29.

Hume GE et al. (2006) Angiotensinogen and transforming growth factor beta1: novel genes in the pathogenesis of Crohn's disease.

[^]
30.

Frank D et al. (2007) Calsarcin-1 protects against angiotensin-II induced cardiac hypertrophy.

[^]
31.

Isa MN et al. (1990) Assignment of the human angiotensinogen gene to chromosome 1q42-q43 by nonisotopic in situ hybridization [corrected]

[^]
32.

Gaillard-Sanchez I et al. (1990) Assignment by in situ hybridization of the angiotensinogen gene to chromosome band 1q4, the same region as the human renin gene.

[^]
33.

Gaillard I et al. (1989) Structure of human angiotensinogen gene.

[^]
34.

Kunapuli SP et al. (1987) Expression of human angiotensinogen cDNA in Escherichia coli.

[^]
35.

Weeks DE et al. (1988) The affected-pedigree-member method of linkage analysis.

[^]
36.

Arakawa K et al. (1968) Enzymatic degradation and electrophoresis of human angiotensin I.

[^]
37.

Kageyama R et al. (1984) Primary structure of human preangiotensinogen deduced from the cloned cDNA sequence.

[^]
38.

Ohkubo H et al. (1983) Cloning and sequence analysis of cDNA for rat angiotensinogen.

[^]
39.

Caulfield M et al. (1995) Linkage of the angiotensinogen gene locus to human essential hypertension in African Caribbeans.

[^]
40.

Fornage M et al. (1995) Variation at the M235T locus of the angiotensinogen gene and essential hypertension: a population-based case-control study from Rochester, Minnesota.

[^]
41.

Katsuya T et al. (1995) Association of angiotensinogen gene T235 variant with increased risk of coronary heart disease.

[^]
42.

Bloem LJ et al. (1995) The serum angiotensinogen concentration and variants of the angiotensinogen gene in white and black children.

[^]
43.

Hegele RA et al. (1994) A polymorphism of the angiotensinogen gene associated with variation in blood pressure in a genetic isolate.

[^]
44.

Tanimoto K et al. (1994) Angiotensinogen-deficient mice with hypotension.

[^]
45.

Abonia JP et al. (1993) Linkage of Agt and Actsk-1 to distal mouse chromosome 8 loci: a new conserved linkage.

[^]
46.

Hata A et al. (1994) Angiotensinogen as a risk factor for essential hypertension in Japan.

[^]
47.

Caulfield M et al. (1994) Linkage of the angiotensinogen gene to essential hypertension.

[^]
48.

Sadoshima J et al. (1993) Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro.

[^]
49.

Arngrímsson R et al. (1993) Angiotensinogen: a candidate gene involved in preeclampsia?

[^]
50.

Ward K et al. (1993) A molecular variant of angiotensinogen associated with preeclampsia.

[^]
51.

Russ AP et al. (1993) Rapid detection of the hypertension-associated Met235-->Thr allele of the human angiotensinogen gene.

[^]
52.

Hegele RA et al. (1996) Genetic and biochemical factors associated with variation in blood pressure in a genetic isolate.

[^]
53.

Davisson RL et al. (1997) Complementation of reduced survival, hypotension, and renal abnormalities in angiotensinogen-deficient mice by the human renin and human angiotensinogen genes.

[^]
54.

Marre M et al. (1997) Contribution of genetic polymorphism in the renin-angiotensin system to the development of renal complications in insulin-dependent diabetes: Genetique de la Nephropathie Diabetique (GENEDIAB) study group.

[^]
55.

Inoue I et al. (1997) A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro.

[^]
56.

Pei Y et. al. (1997) Association of angiotensinogen gene T235 variant with progression of immunoglobin A nephropathy in Caucasian patients.

[^]
57.

Niu T et al. (1998) Angiotensinogen gene and hypertension in Chinese.

[^]
58.

Karlsson C et al. (1998) Human adipose tissue expresses angiotensinogen and enzymes required for its conversion to angiotensin II.

[^]
59.

Frossard PM et al. (1998) Associations of angiotensinogen gene mutations with hypertension and myocardial infarction in a gulf population.

[^]
60.

Neel JV et. al. (1998) Type II diabetes, essential hypertension, and obesity as "syndromes of impaired genetic homeostasis": the "thrifty genotype" hypothesis enters the 21st century.

[^]

 

 
Ihre Nachricht: