Molekulargenetische Diagnostik
Praxis Dr. Mato Nagel

Mesangioproliferative Glomerulonephritis

Die wichtigtse mesangioproliferative Glomerulonephritis ist die IgA-Nephropathie, so dass beide Erkrankungen in vielen Lehrbüchern zusammen abgehandelt werden. Jedoch kann die mesangioproliferative Glomerulonephritis auch bei verschiedenen anderen Erkrankungen, wie der Lupus-Nephritis, in Erscheinung treten. Ein anderer Grund, diese Erkrankungen separat zu betrachten, findet sich in der Tatsache, dass die IgA-Nephropathie durch die Ergebnisse moderner genetischer Forschung in verschiedene Formen pathogenetisch differenziert werden kann. Mesangioproliferative Glomerulonephritis ist eine histologische Diagnose, die vor allem auf der mesagialen Zellvermehrung und IgA-Ablagerung beruht. Der Klinische Verlauf wird vor allem durch Hämaturie und hinzutretender Proteinurie und Niereninsuffizienz bestimmt.

Einteilung

Morphologisch

Meist sind bei der mesangioproliferative Glomerulonephritis IgA-Ablagerungen vorhanden, so dass die Erkrankung vielfach mit der IgA-nephropathie zusammegefasst wird. Es lässt sich jedoch auch eine Non-IgA mesangioproliferative Glomerulonephritis abgrenzen, über die noch recht wenig bekannt ist.[1]

Ätiologisch

Es lassen sich fernerhin primäre und sekundäre Formen abgrenzen. Zu den Erkrankungen, die sekundär einer mesangioproliferative Glomerulonephritis führen können, zählt zum Beispiel die Lupus-Nephritis.

Genetisch

Unter den genetischen Faktoren, die bei dieser Erkrankung gefunden werden lassen sich solche abgrenzen, die zu einem erhöhten Risiko führen und solche, die Erkrankungen auslösen, die oft von einer mesangioproliferative Glomerulonephritis begleitet wird. Zu letzteren gehören das Wiskott-Aldrich-Syndrom, der Komplement C1q-Mangel und die Schimke-Dysplasie.

Gliederung

Glomerulonephritis
C3 Glomerulopathie
CFHR5 Nephropathie
Goodpasture-Syndrom
Lupus erythematodes Nephritis
Membranoproliferative Glomerulonephritis (MPGN)
Membranöse Glomerulonephritis
Mesangioproliferative Glomerulonephritis
CXCR1
IgA-Nephropathie
CFHR1
CFHR3
CFHR5
IgA-Nephropathie Typ 1
IgA-Nephropathie Typ 2
IgA-Nephropathie Typ 3
SPRY2
Komplement C1q-Mangel
C1QA
C1QB
C1QC
Schimke-Dysplasie
SMARCAL1
Wiskott-Aldrich-Syndrom
WAS

Referenzen:

1.

Pei Y et. al. (1997) Association of angiotensinogen gene T235 variant with progression of immunoglobin A nephropathy in Caucasian patients.

[^]
2.

Yoshida H et. al. (1995) Role of the deletion of polymorphism of the angiotensin converting enzyme gene in the progression and therapeutic responsiveness of IgA nephropathy.

[^]
3.

Wengler G et. al. (1995) Nonrandom inactivation of the X chromosome in early lineage hematopoietic cells in carriers of Wiskott-Aldrich syndrome.

[^]
4.

Kwan SP et. al. (1995) Identification of mutations in the Wiskott-Aldrich syndrome gene and characterization of a polymorphic dinucleotide repeat at DXS6940, adjacent to the disease gene.

[^]
5.

Villa A et. al. (1995) X-linked thrombocytopenia and Wiskott-Aldrich syndrome are allelic diseases with mutations in the WASP gene.

[^]
6.

Derry JM et. al. (1994) Isolation of a novel gene mutated in Wiskott-Aldrich syndrome.

[^]
7.

Symons M et. al. (1996) Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization.

[^]
8.

Kolluri R et. al. (1996) Direct interaction of the Wiskott-Aldrich syndrome protein with the GTPase Cdc42.

[^]
9.

Derry JM et. al. (1995) The mouse homolog of the Wiskott-Aldrich syndrome protein (WASP) gene is highly conserved and maps near the scurfy (sf) mutation on the X chromosome.

[^]
10.

Schindelhauer D et. al. (1996) Wiskott-Aldrich syndrome: no strict genotype-phenotype correlations but clustering of missense mutations in the amino-terminal part of the WASP gene product.

[^]
11.

Greer WL et. al. (1996) Identification of WASP mutations, mutation hotspots and genotype-phenotype disparities in 24 patients with the Wiskott-Aldrich syndrome.

[^]
12.

Parolini O et. al. (1998) X-linked Wiskott-Aldrich syndrome in a girl.

[^]
13.

Puck JM et. al. (1998) X inactivation in females with X-linked disease.

[^]
14.

Waisfisz Q et. al. (1999) Spontaneous functional correction of homozygous fanconi anaemia alleles reveals novel mechanistic basis for reverse mosaicism.

[^]
15.

Lemahieu V et. al. (1999) Novel mutations in the Wiskott-Aldrich syndrome protein gene and their effects on transcriptional, translational, and clinical phenotypes.

[^]
16.

Thompson LJ et. al. () Unique and recurrent WAS gene mutations in Wiskott-Aldrich syndrome and X-linked thrombocytopenia.

[^]
17.

Devriendt K et. al. (2001) Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia.

[^]
18.

Wada T et. al. (2001) Somatic mosaicism in Wiskott--Aldrich syndrome suggests in vivo reversion by a DNA slippage mechanism.

[^]
19.

Lutskiy MI et. al. (2002) Wiskott-Aldrich syndrome in a female.

[^]
20.

Sasahara Y et. al. (2002) Mechanism of recruitment of WASP to the immunological synapse and of its activation following TCR ligation.

[^]
21.

Wada T et. al. (2003) Second-site mutation in the Wiskott-Aldrich syndrome (WAS) protein gene causes somatic mosaicism in two WAS siblings.

[^]
22.

ALDRICH RA et. al. (1954) Pedigree demonstrating a sex-linked recessive condition characterized by draining ears, eczematoid dermatitis and bloody diarrhea.

[^]
23.

Wada T et. al. (2004) Multiple patients with revertant mosaicism in a single Wiskott-Aldrich syndrome family.

[^]
24.

Du W et. al. (2006) A second-site mutation in the initiation codon of WAS (WASP) results in expansion of subsets of lymphocytes in an Wiskott-Aldrich syndrome patient.

[^]
25.

Binder V et. al. (2006) The genotype of the original Wiskott phenotype.

[^]
26.

Dobbs AK et. al. (2007) A possible bichromatid mutation in a male gamete giving rise to a female mosaic for two different mutations in the X-linked gene WAS.

[^]
27.

Boztug K et. al. (2008) Multiple independent second-site mutations in two siblings with somatic mosaicism for Wiskott-Aldrich syndrome.

[^]
28.

Milillo A et. al. (2015) A SPRY2 mutation leading to MAPK/ERK pathway inhibition is associated with an autosomal dominant form of IgA nephropathy.

[^]
29.

Song J et. al. (2003) Peroxisome proliferator-activated receptor gamma C161T polymorphisms and survival of Japanese patients with immunoglobulin A nephropathy.

[^]
30.

Scolari F et. al. (1999) Familial clustering of IgA nephropathy: further evidence in an Italian population.

[^]
31.

Zheng F et. al. (1999) Uteroglobin is essential in preventing immunoglobulin A nephropathy in mice.

[^]
32.

Hsu SI et. al. (2000) Evidence for genetic factors in the development and progression of IgA nephropathy.

[^]
33.

Gharavi AG et. al. (2000) IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22-23.

[^]
34.

Hiki Y et. al. (2001) Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy.

[^]
35.

Allen AC et. al. (2001) Mesangial IgA1 in IgA nephropathy exhibits aberrant O-glycosylation: observations in three patients.

[^]
36.

Takei T et. al. (2002) Association between single-nucleotide polymorphisms in selectin genes and immunoglobulin A nephropathy.

[^]
37.

Donadio JV et. al. (2002) IgA nephropathy.

[^]
38.

Yoon HJ et. al. (2003) Association of the CD14 gene -159C polymorphism with progression of IgA nephropathy.

[^]
39.

Song J et. al. (2003) Gender specific association of aldosterone synthase gene polymorphism with renal survival in patients with IgA nephropathy.

[^]
40.

Wang J et. al. (2004) Dysregulated LIGHT expression on T cells mediates intestinal inflammation and contributes to IgA nephropathy.

[^]
41.

Bisceglia L et. al. (2006) Genetic heterogeneity in Italian families with IgA nephropathy: suggestive linkage for two novel IgA nephropathy loci.

[^]
42.

Suzuki H et. al. (2008) IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1.

[^]
43.

None (1989) Familial cases of Berger's disease and anaphylactoid purpura: more frequent than previously thought.

[^]
44.

None (1987) The commonest glomerulonephritis in the world: IgA nephropathy.

[^]
45.

Julian BA et. al. (1988) IgA nephropathy, the most common glomerulonephritis worldwide. A neglected disease in the United States?

[^]
46.

Asamoah A et. al. (1987) A major gene model for the familial aggregation of plasma IgA concentration.

[^]
47.

Coppo R et. al. (1986) Dietary gluten and primary IgA nephropathy.

[^]
48.

Julian BA et. al. (1985) Familial IgA nephropathy. Evidence of an inherited mechanism of disease.

[^]
49.

Jennette JC et. al. (1985) Low incidence of IgA nephropathy in blacks.

[^]
50.

None (1969) IgA glomerular deposits in renal disease.

[^]
51.

McCoy RC et. al. (1974) IgA nephropathy.

[^]
52.

Croker BP et. al. (1983) IgA nephropathy. Correlation of clinical and histologic features.

[^]
53.

Bene MC et. al. (1983) Immunoglobulin A nephropathy. Quantitative immunohistomorphometry of the tonsillar plasma cells evidences an inversion of the immunoglobulin A versus immunoglobulin G secreting cell balance.

[^]
54.

Berthoux FC et. al. (1978) HLA-Bw35 and mesangial IgA glomerulonephritis.

[^]
55.

Brettle R et. al. (1978) Mesangial IgA glomerulonephritis and HLA antigens.

[^]
56.

Tolkoff-Rubin NE et. al. (1978) IGA nephropathy in HLA-identical siblings.

[^]
57.

Katz A et. al. (1980) Family study in IgA nephritis: the possible role of HLA antigens.

[^]
58.

Tomana M et. al. (1997) Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG.

[^]
59.

Shimokawa T et. al. (2000) Identification and characterization of the promoter for the gene encoding the human myeloid IgA Fc receptor (FcalphaR, CD89).

[^]
60.

Tsuge T et. al. (2001) Polymorphism in promoter region of Fcalpha receptor gene in patients with IgA nephropathy.

[^]
61.

Obara W et. al. (2003) Association of single-nucleotide polymorphisms in the polymeric immunoglobulin receptor gene with immunoglobulin A nephropathy (IgAN) in Japanese patients.

[^]
62.

Paterson AD et. al. (2007) Genome-wide linkage scan of a large family with IgA nephropathy localizes a novel susceptibility locus to chromosome 2q36.

[^]
63.

Gharavi AG et. al. (2011) Genome-wide association study identifies susceptibility loci for IgA nephropathy.

[^]
64.

Wyatt RJ et. al. (2013) IgA nephropathy.

[^]
65.

Remold-O'Donnell E et. al. (1984) Characterization of a human lymphocyte surface sialoglycoprotein that is defective in Wiskott-Aldrich syndrome.

[^]
66.

Lum LG et. al. (1980) Splenectomy in the management of the thrombocytopenia of the Wiskott-Aldrich syndrome.

[^]
67.

None (1980) Splenectomy in the Wiskott-Aldrich syndrome.

[^]
68.

Holmberg L et. al. (1983) A prenatal study of fetal platelet count and size with application to fetus at risk for Wiskott-Aldrich syndrome.

[^]
69.

Hutter JJ et. al. (1981) Results of a thymic epithelial transplant in a child with Wiskott-Aldrich syndrome and central nervous system lymphoma.

[^]
70.

Kapoor N et. al. (1981) Reconstitution of normal megakaryocytopoiesis and immunologic functions in Wiskott-Aldrich syndrome by marrow transplantation following myeloablation and immunosuppression with busulfan and cyclophosphamide.

[^]
71.

Perry GS et. al. (1980) The Wiskott-Aldrich syndrome in the United States and Canada (1892-1979).

[^]
72.

Spitler LE et. al. (1980) Nephropathy in the Wiskott-Aldrich syndrome.

[^]
73.

Prchal JT et. al. (1980) Wiskott-Aldrich syndrome: cellular impairments and their implication for carrier detection.

[^]
74.

Sullivan KE et. al. (1994) A multiinstitutional survey of the Wiskott-Aldrich syndrome.

[^]
75.

Knox-Macaulay HH et. al. (1993) X linked recessive thrombocytopenia.

[^]
76.

Notarangelo LD et. al. (1993) Application of molecular analysis to genetic counseling in the Wiskott-Aldrich syndrome (WAS).

[^]
77.

Giliani S et. al. (1999) Prenatal molecular diagnosis of Wiskott-Aldrich syndrome by direct mutation analysis.

[^]
78.

Yamada M et. al. (1999) Flow cytometric analysis of Wiskott-Aldrich syndrome (WAS) protein in lymphocytes from WAS patients and their familial carriers.

[^]
79.

Yamada M et. al. (2000) Determination of carrier status for the Wiskott-Aldrich syndrome by flow cytometric analysis of Wiskott-Aldrich syndrome protein expression in peripheral blood mononuclear cells.

[^]
80.

None (1959) Methodology in human genetics.

[^]
81.

GELZER J et. al. (1961) [Wiskott-Aldrich syndrome].

[^]
82.

VAN DEN BOSCH J et. al. (1964) [THE ALDRICH SYNDROME; A CLINICAL AND GENETIC STUDY OF SEVERAL DUTCH FAMILIES].

[^]
83.

Puck JM et. al. (2006) Lessons from the Wiskott-Aldrich syndrome.

[^]
84.

Boztug K et. al. (2010) Stem-cell gene therapy for the Wiskott-Aldrich syndrome.

[^]
85.

Waikhom R et. al. (2012) Non-IgA mesangioproliferative glomerulonephritis: a benign entity?

[^]
86.

Axelsen M et. al. (2014) Mesangioproliferative glomerulonephritis: a 30-year prognosis study.

[^]
87.

Raghavan R et. al. (2014) Takayasu arteritis: Association with mesangioproliferative glomerulonephritis in a 9-year-old child.

[^]
88.

Rathore SS et. al. (2015) Mesangioproliferative glomerulonephritis in a patient with Kimura's disease presenting as Nephrotic syndrome.

[^]
89.

Cheungpasitporn W et. al. (2011) Henoch-Schönlein purpura in an older man presenting as rectal bleeding and IgA mesangioproliferative glomerulonephritis: a case report.

[^]