Molekulargenetische Diagnostik
Praxis Dr. Mato Nagel

Endozytosestörungen der proximalen Tubulusfunktion

In der Gruppe proximal tubulärer Erkrankungen, die auf einer Endozytosestörung beruhen, werden die verschiedenen Protein-Rezeptor-Defekte zusammengefasst. Im wesentlichen präsentieren sich diese Störungen auch als Fanconi-Syndrom, jedoch überwiegt sehr stark die tubuläre Proteinurie. Auch der Mangel an proteingebundenen fettlöslichen Hormonen und Vitaminen kann klinisch in Erscheinung treten.

Differentialdiagnostische Abgrenzung

Die Gruppe der Endozytosestörungen und die Gruppe der metabolischen Störungen sind recht überlappend. Zum einen ist die Endozytose ein Energiekonsumierender Prozess, so dass Störungen des Energiestoffwechsels auch Störungen der Endozytosefunktion nach sich ziehen müssen. Andererseits führt eine gestörte Endozytose, zum Beispiel durch den fehlerhaften Abbau der aufgenommenen Substanzen zu einer Anreicherung nicht katabolisierbarer Metaboliten letztlich auch zu einer metabolischen Störung der Zellfunktion.

Symptome

Proximaler Tubulusschaden
Bei Endozytosestörungen des proximalen Tubulus ist das Fanconis Syndrom vor allem durch die massive tubuläre Proteinurie dominiert.

Gliederung

Genetisch bedingte Störungen der proximalen Tubulusfunktion
Endozytosestörungen der proximalen Tubulusfunktion
Donnai-Barrow-Syndrom
LRP2
Imerslund-Grasbeck-Syndrom
AMN
CUBN
Metabolische Störungen der proximalen Tubulusfunktion
Spezifische Transportstörungen des proximalen Tubulus

Referenzen:

1.

de Ligt J et. al. (2012) Diagnostic exome sequencing in persons with severe intellectual disability.

[^]
2.

Nykjaer A et. al. (1999) An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3.

[^]
3.

Marinò M et. al. (1999) Serum antibodies against megalin (GP330) in patients with autoimmune thyroiditis.

[^]
4.

Leheste JR et. al. (1999) Megalin knockout mice as an animal model of low molecular weight proteinuria.

[^]
5.

Schmitz C et. al. (2002) Megalin deficiency offers protection from renal aminoglycoside accumulation.

[^]
6.

Nykjaer A et. al. (2001) Cubilin dysfunction causes abnormal metabolism of the steroid hormone 25(OH) vitamin D(3).

[^]
7.

Chassaing N et. al. (2003) Donnai-Barrow syndrome: four additional patients.

[^]
8.

Nagai M et. al. (2003) The adaptor protein ARH escorts megalin to and through endosomes.

[^]
9.

Tramontano A et. al. (2004) Conformation and glycosylation of a megalin fragment correlate with nephritogenicity in Heymann nephritis.

[^]
10.

Hammes A et. al. (2005) Role of endocytosis in cellular uptake of sex steroids.

[^]
11.

Naccache SN et. al. (2006) Binding of internalized receptors to the PDZ domain of GIPC/synectin recruits myosin VI to endocytic vesicles.

[^]
12.

Caruso-Neves C et. al. (2006) PKB and megalin determine the survival or death of renal proximal tubule cells.

[^]
13.

Kantarci S et. al. (2007) Mutations in LRP2, which encodes the multiligand receptor megalin, cause Donnai-Barrow and facio-oculo-acoustico-renal syndromes.

[^]
14.

Raychowdhury R et. al. (1989) Autoimmune target in Heymann nephritis is a glycoprotein with homology to the LDL receptor.

[^]
15.

Chatelet F et. al. (1986) Ultrastructural localization by monoclonal antibodies of brush border antigens expressed by glomeruli. II. Extrarenal distribution.

[^]
16.

Kerjaschki D et. al. (1983) Immunocytochemical localization of the Heymann nephritis antigen (GP330) in glomerular epithelial cells of normal Lewis rats.

[^]
17.

Moestrup SK et. al. (1995) Evidence that epithelial glycoprotein 330/megalin mediates uptake of polybasic drugs.

[^]
18.

Farquhar MG et. al. (1995) The Heymann nephritis antigenic complex: megalin (gp330) and RAP.

[^]
19.

Chowdhary BP et. al. (1995) In situ hybridization mapping of a 500-kDa calcium-sensing protein gene (LRP2) to human chromosome region 2q31-->q32.1 and porcine chromosome region 15q22-->q24.

[^]
20.

None (1995) The unfolding story of megalin (gp330): now recognized as a drug receptor.

[^]
21.

Kounnas MZ et. al. (1995) Identification of glycoprotein 330 as an endocytic receptor for apolipoprotein J/clusterin.

[^]
22.

Saito A et. al. (1994) Complete cloning and sequencing of rat gp330/"megalin," a distinctive member of the low density lipoprotein receptor gene family.

[^]
23.

Korenberg JR et. al. (1994) Chromosomal localization of human genes for the LDL receptor family member glycoprotein 330 (LRP2) and its associated protein RAP (LRPAP1).

[^]
24.

Donnai D et. al. (1993) Diaphragmatic hernia, exomphalos, absent corpus callosum, hypertelorism, myopia, and sensorineural deafness: a newly recognized autosomal recessive disorder?

[^]
25.

Hjälm G et. al. (1996) Cloning and sequencing of human gp330, a Ca(2+)-binding receptor with potential intracellular signaling properties.

[^]
26.

Willnow TE et. al. (1996) Defective forebrain development in mice lacking gp330/megalin.

[^]
27.

Devriendt K et. al. (1998) Proteinuria in a patient with the diaphragmatic hernia-hypertelorism-myopia-deafness syndrome: further evidence that the facio-oculo-acoustico-renal syndrome represents the same entity.

[^]
28.

Fyfe JC et. al. (1991) Inherited selective intestinal cobalamin malabsorption and cobalamin deficiency in dogs.

[^]
29.

Aminoff M et. al. (1995) Selective intestinal malabsorption of vitamin B12 displays recessive mendelian inheritance: assignment of a locus to chromosome 10 by linkage.

[^]
30.

Bork P et. al. (1993) The CUB domain. A widespread module in developmentally regulated proteins.

[^]
31.

Seetharam B et. al. (1997) Identification of rat yolk sac target protein of teratogenic antibodies, gp280, as intrinsic factor-cobalamin receptor.

[^]
32.

Birn H et. al. (1997) Characterization of an epithelial approximately 460-kDa protein that facilitates endocytosis of intrinsic factor-vitamin B12 and binds receptor-associated protein.

[^]
33.

Moestrup SK et. al. (1998) The intrinsic factor-vitamin B12 receptor and target of teratogenic antibodies is a megalin-binding peripheral membrane protein with homology to developmental proteins.

[^]
34.

Kozyraki R et. al. (1998) The human intrinsic factor-vitamin B12 receptor, cubilin: molecular characterization and chromosomal mapping of the gene to 10p within the autosomal recessive megaloblastic anemia (MGA1) region.

[^]
35.

Aminoff M et. al. (1999) Mutations in CUBN, encoding the intrinsic factor-vitamin B12 receptor, cubilin, cause hereditary megaloblastic anaemia 1.

[^]
36.

Kozyraki R et. al. (1999) The intrinsic factor-vitamin B12 receptor, cubilin, is a high-affinity apolipoprotein A-I receptor facilitating endocytosis of high-density lipoprotein.

[^]
37.

Xu D et. al. (1999) Genetic evidence of an accessory activity required specifically for cubilin brush-border expression and intrinsic factor-cobalamin absorption.

[^]
38.

Kristiansen M et. al. (2000) Cubilin P1297L mutation associated with hereditary megaloblastic anemia 1 causes impaired recognition of intrinsic factor-vitamin B(12) by cubilin.

[^]
39.

Fyfe JC et. al. (2004) The functional cobalamin (vitamin B12)-intrinsic factor receptor is a novel complex of cubilin and amnionless.

[^]
40.

Andersen CB et. al. (2010) Structural basis for receptor recognition of vitamin-B(12)-intrinsic factor complexes.

[^]
41.

Storm T et. al. (2011) A patient with cubilin deficiency.

[^]