Laboratory for Molecular Diagnostics
Center for Nephrology and Metabolic Disorders

Wolfram syndrome 1 gene

Mutation in the WFS1 gene account for the autosomal recessive disorder Wolfram syndrome, also called DIDMOAD (Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy, and Deafness). Mutations in this gene can also cause autosomal dominant deafness 6 (DFNA6), also known as DFNA14 or DFNA38.


Clinic Method Carrier testing
Turnaround 5 days
Specimen type genomic DNA
Clinic Method Massive parallel sequencing
Turnaround 25 days
Specimen type genomic DNA
Clinic Method Genomic sequencing of the entire coding region
Turnaround 25 days
Specimen type genomic DNA
Clinic Method Multiplex Ligation-Dependent Probe Amplification
Turnaround 20 days
Specimen type genomic DNA

Related Diseases:

Wolfram syndrome 1



Sandhu MS et al. (2007) Common variants in WFS1 confer risk of type 2 diabetes.


Domènech E et al. (2004) Study of the WFS1 gene and mitochondrial DNA in Spanish Wolfram syndrome families.


Hardy C et al. (1999) Clinical and molecular genetic analysis of 19 Wolfram syndrome kindreds demonstrating a wide spectrum of mutations in WFS1.


Sam W et al. (2001) Homozygosity for a 4-bp deletion in a patient with Wolfram syndrome suggesting possible phenotype and genotype correlation.


Khanim F et al. (2001) WFS1/wolframin mutations, Wolfram syndrome, and associated diseases.


Hansen L et al. (2005) Mutation analysis of the WFS1 gene in seven Danish Wolfram syndrome families; four new mutations identified.


Eiberg H et al. (2006) Autosomal dominant optic atrophy associated with hearing impairment and impaired glucose regulation caused by a missense mutation in the WFS1 gene.


Inoue H et al. (1998) A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome).


Strom TM et al. (1998) Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein.


Gómez-Zaera M et al. (2001) Presence of a major WFS1 mutation in Spanish Wolfram syndrome pedigrees.


Takeda K et al. (2001) WFS1 (Wolfram syndrome 1) gene product: predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain.


Bespalova IN et al. (2001) Mutations in the Wolfram syndrome 1 gene (WFS1) are a common cause of low frequency sensorineural hearing loss.


Young TL et al. (2001) Non-syndromic progressive hearing loss DFNA38 is caused by heterozygous missense mutation in the Wolfram syndrome gene WFS1.


Cryns K et al. (2002) Mutations in the WFS1 gene that cause low-frequency sensorineural hearing loss are small non-inactivating mutations.


Domènech E et al. (2002) WFS1 mutations in Spanish patients with diabetes mellitus and deafness.


Komatsu K et al. (2002) Confirmation of genetic homogeneity of nonsyndromic low-frequency sensorineural hearing loss by linkage analysis and a DFNA6/14 mutation in a Japanese family.


Colosimo A et al. (2003) Molecular detection of novel WFS1 mutations in patients with Wolfram syndrome by a DHPLC-based assay.


Hofmann S et al. (2003) Wolfram syndrome: structural and functional analyses of mutant and wild-type wolframin, the WFS1 gene product.


Cryns K et al. (2003) Mutational spectrum of the WFS1 gene in Wolfram syndrome, nonsyndromic hearing impairment, diabetes mellitus, and psychiatric disease.


Osman AA et al. (2003) Wolframin expression induces novel ion channel activity in endoplasmic reticulum membranes and increases intracellular calcium.


Ishihara H et al. (2004) Disruption of the WFS1 gene in mice causes progressive beta-cell loss and impaired stimulus-secretion coupling in insulin secretion.


Fonseca SG et al. (2005) WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic beta-cells.


Hofmann S et al. (2006) Wolfram syndrome-associated mutations lead to instability and proteasomal degradation of wolframin.


Fukuoka H et al. (2007) Mutations in the WFS1 gene are a frequent cause of autosomal dominant nonsyndromic low-frequency hearing loss in Japanese.


Zatyka M et al. (2008) Sodium-potassium ATPase 1 subunit is a molecular partner of Wolframin, an endoplasmic reticulum protein involved in ER stress.


Hildebrand MS et al. (2008) Autoimmune disease in a DFNA6/14/38 family carrying a novel missense mutation in WFS1.


Lesperance MM et al. (1995) A gene for autosomal dominant nonsyndromic hereditary hearing impairment maps to 4p16.3.


NCBI article

NCBI 7466 [^]

OMIM.ORG article

Omim 606201 [^]

Orphanet article

Orphanet ID 120514 [^]

Wikipedia article

Wikipedia EN (WFS1) [^]
Update: May 9, 2019