Molekulargenetisches Labor
Zentrum für Nephrologie und Stoffwechsel
Moldiag Erkrankungen Gene Support Kontakt

SH2-Domain-Protein 1A

Das SH2D1A-Gen kodiert eine Protein welches an verschiedenen Stellen bei der Signaltransduktion in Lymphozyten verantwortlich ist. Mutationen verursachen das x-chromosomal rezessive lymphoproliferatives Syndrom 1.

Gentests:

Klinisch Untersuchungsmethoden Familienuntersuchung
Bearbeitungszeit 5 Tage
Probentyp genomische DNS
Klinisch Untersuchungsmethoden Hochdurchsatz-Sequenzierung
Bearbeitungszeit 25 Tage
Probentyp genomische DNS
Forschung Untersuchungsmethoden Direkte Sequenzierung der proteinkodierenden Bereiche eines Gens
Bearbeitungszeit 25 Tage
Probentyp genomische DNS
Forschung Untersuchungsmethoden Multiplex ligationsabhängige Amplifikation
Bearbeitungszeit 25 Tage
Probentyp genomische DNS

Verknüpfte Erkrankungen:

X-chromosomales lymphoproliferatives Syndrom 1
SH2D1A

Referenzen:

1.

Nichols KE et al. (2005) Regulation of NKT cell development by SAP, the protein defective in XLP.

external link
2.

Morra M et al. (2001) Characterization of SH2D1A missense mutations identified in X-linked lymphoproliferative disease patients.

external link
3.

Latour S et al. (2001) Regulation of SLAM-mediated signal transduction by SAP, the X-linked lymphoproliferative gene product.

external link
4.

Sumazaki R et al. (2001) SH2D1A mutations in Japanese males with severe Epstein-Barr virus--associated illnesses.

external link
5.

Hwang PM et al. (2002) A "three-pronged" binding mechanism for the SAP/SH2D1A SH2 domain: structural basis and relevance to the XLP syndrome.

external link
6.

Li C et al. (2003) Dual functional roles for the X-linked lymphoproliferative syndrome gene product SAP/SH2D1A in signaling through the signaling lymphocyte activation molecule (SLAM) family of immune receptors.

external link
7.

Crotty S et al. (2003) SAP is required for generating long-term humoral immunity.

external link
8.

Chan B et al. (2003) SAP couples Fyn to SLAM immune receptors.

external link
9.

Parolini O et al. (2003) Differential methylation pattern of the X-linked lymphoproliferative (XLP) disease gene SH2D1A correlates with the cell lineage-specific transcription.

external link
10.

Sanzone S et al. (2003) SLAM-associated protein deficiency causes imbalanced early signal transduction and blocks downstream activation in T cells from X-linked lymphoproliferative disease patients.

external link
11.

Czar MJ et al. (2001) Altered lymphocyte responses and cytokine production in mice deficient in the X-linked lymphoproliferative disease gene SH2D1A/DSHP/SAP.

external link
12.

Pasquier B et al. (2005) Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product.

external link
13.

Morra M et al. (2005) Defective B cell responses in the absence of SH2D1A.

external link
14.

Aoukaty A et al. (2005) Role for glycogen synthase kinase-3 in NK cell cytotoxicity and X-linked lymphoproliferative disease.

external link
15.

Veillette A et al. (2008) SAP expression in T cells, not in B cells, is required for humoral immunity.

external link
16.

Deenick EK et al. (2008) Immunology: Helpful T cells are sticky.

external link
17.

Qi H et al. (2008) SAP-controlled T-B cell interactions underlie germinal centre formation.

external link
18.

Nagy N et al. (2009) The proapoptotic function of SAP provides a clue to the clinical picture of X-linked lymphoproliferative disease.

external link
19.

Snow AL et al. (2009) Restimulation-induced apoptosis of T cells is impaired in patients with X-linked lymphoproliferative disease caused by SAP deficiency.

external link
20.

Recher M et al. (2013) Intronic SH2D1A mutation with impaired SAP expression and agammaglobulinemia.

external link
21.

Yin L et al. (1999) SH2D1A mutation analysis for diagnosis of XLP in typical and atypical patients.

external link
22.

Shapiro MB et al. (1987) RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression.

external link
23.

None (1982) The CBA/N mouse strain: an experimental model illustrating the influence of the X-chromosome on immunity.

external link
24.

Thorley-Lawson DA et al. (1982) Epstein-Barr virus superinduces a new human B cell differentiation antigen (B-LAST 1) expressed on transformed lymphoblasts.

external link
25.

Coffey AJ et al. (1998) Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene.

external link
26.

Sayos J et al. (1998) The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM.

external link
27.

Sumegi J et al. () The molecular genetics of X-linked lymphoproliferative (Duncan's) disease.

external link
28.

Tangye SG et al. (1999) Cutting edge: human 2B4, an activating NK cell receptor, recruits the protein tyrosine phosphatase SHP-2 and the adaptor signaling protein SAP.

external link
29.

Poy F et al. (1999) Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition.

external link
30.

Brandau O et al. (1999) Epstein-Barr virus-negative boys with non-Hodgkin lymphoma are mutated in the SH2D1A gene, as are patients with X-linked lymphoproliferative disease (XLP).

external link
31.

Ross MT et al. (2005) The DNA sequence of the human X chromosome.

external link
32.

Strahm B et al. (2000) Recurrent B-cell non-Hodgkin's lymphoma in two brothers with X-linked lymphoproliferative disease without evidence for Epstein-Barr virus infection.

external link
33.

Lappalainen I et al. (2000) Structural basis for SH2D1A mutations in X-linked lymphoproliferative disease.

external link
34.

Sylla BS et al. (2000) The X-linked lymphoproliferative syndrome gene product SH2D1A associates with p62dok (Dok1) and activates NF-kappa B.

external link
35.

Parolini S et al. (2000) X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells.

external link
36.

Tangye SG et al. (2000) Functional requirement for SAP in 2B4-mediated activation of human natural killer cells as revealed by the X-linked lymphoproliferative syndrome.

external link
37.

Benoit L et al. (2000) Defective NK cell activation in X-linked lymphoproliferative disease.

external link
38.

Sumegi J et al. (2000) Correlation of mutations of the SH2D1A gene and epstein-barr virus infection with clinical phenotype and outcome in X-linked lymphoproliferative disease.

external link
39.

Arico M et al. (2001) Hemophagocytic lymphohistiocytosis due to germline mutations in SH2D1A, the X-linked lymphoproliferative disease gene.

external link
40.

Wu C et al. (2001) SAP controls T cell responses to virus and terminal differentiation of TH2 cells.

external link
Update: 14. August 2020
Copyright © 2005-2020 Zentrum für Nephrologie und Stoffwechsel, Dr. Mato Nagel
Albert-Schweitzer-Ring 32, D-02943 Weißwasser, Deutschland, Tel.: +49-3576-287922, Fax: +49-3576-287944
Seitenüberblick | Webmail | Haftungsausschluss | Datenschutz