Molekulargenetisches Labor
Zentrum für Nephrologie und Stoffwechsel

Wahrscheinlich ATP-abhängige RNA-Helikase DDX58

Das DDX58-Gen kodiert ein Protein, welches mit der Bindung an doppestängige virale RNA und caspase die angeborene Immunreaktion gegen diese Erreger hervorruft. Mutationen sind für das autosomal dominante Singleton-Merten-Syndrom 2 verantwortlich.

Gentests:

Klinisch Untersuchungsmethoden Familienuntersuchung
Bearbeitungszeit 5 Tage
Probentyp genomische DNS
Klinisch Untersuchungsmethoden Hochdurchsatz-Sequenzierung
Bearbeitungszeit 25 Tage
Probentyp genomische DNS
Forschung Untersuchungsmethoden Direkte Sequenzierung der proteinkodierenden Bereiche eines Gens
Bearbeitungszeit 25 Tage
Probentyp genomische DNS

Verknüpfte Erkrankungen:

Singleton-Merten-Syndrom 2
DDX58

Referenzen:

1.

Haralambieva IH et al. (2011) Genetic polymorphisms in host antiviral genes: associations with humoral and cellular immunity to measles vaccine.

[^]
2.

Kato H et al. (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses.

[^]
3.

Imaizumi T et al. (2002) Retinoic acid-inducible gene-I is induced in endothelial cells by LPS and regulates expression of COX-2.

[^]
4.

Cui XF et al. (2004) Retinoic acid-inducible gene-I is induced by interferon-gamma and regulates the expression of interferon-gamma stimulated gene 15 in MCF-7 cells.

[^]
5.

Yoneyama M et al. (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses.

[^]
6.

Imaizumi T et al. (2004) Expression of retinoic acid-inducible gene-I in vascular smooth muscle cells stimulated with interferon-gamma.

[^]
7.

Imaizumi T et al. () Interferon-gamma induces retinoic acid-inducible gene-I in endothelial cells.

[^]
8.

Li K et al. (2005) Distinct poly(I-C) and virus-activated signaling pathways leading to interferon-beta production in hepatocytes.

[^]
9.

Breiman A et al. (2005) Inhibition of RIG-I-dependent signaling to the interferon pathway during hepatitis C virus expression and restoration of signaling by IKKepsilon.

[^]
10.

Kato H et al. (2005) Cell type-specific involvement of RIG-I in antiviral response.

[^]
11.

Pichlmair A et al. (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates.

[^]
12.

Hornung V et al. (2006) 5'-Triphosphate RNA is the ligand for RIG-I.

[^]
13.

Saito T et al. (2007) Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2.

[^]
14.

Gack MU et al. (2007) TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity.

[^]
15.

Arimoto K et al. (2007) Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125.

[^]
16.

Zhang NN et al. (2008) RIG-I plays a critical role in negatively regulating granulocytic proliferation.

[^]
17.

Myong S et al. (2009) Cytosolic viral sensor RIG-I is a 5'-triphosphate-dependent translocase on double-stranded RNA.

[^]
18.

Oshiumi H et al. (2010) The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection.

[^]
19.

Kok KH et al. (2011) The double-stranded RNA-binding protein PACT functions as a cellular activator of RIG-I to facilitate innate antiviral response.

[^]
20.

Jiang F et al. (2011) Structural basis of RNA recognition and activation by innate immune receptor RIG-I.

[^]
21.

Peisley A et al. (2014) Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I.

[^]
22.

Goubau D et al. (2014) Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates.

[^]
23.

Jang MA et al. (2015) Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome.

[^]
24.

MacNair L et al. (2016) MTHFSD and DDX58 are novel RNA-binding proteins abnormally regulated in amyotrophic lateral sclerosis.

[^]
Update: 17. Oktober 2019