Molekulargenetisches Labor
Zentrum für Nephrologie und Stoffwechsel

Essentieller NF-kappa-B-Modulator

Das IKBKG-gen kodiert ein Modulator der NF-kappa-B-Funktion. Mutationen führen zu x-chromosomal dominant oder rezessiven Störungen des Ektoderms und der Immunabwehr.

Gentests:

Klinisch Untersuchungsmethoden Familienuntersuchung
Bearbeitungszeit 5 Tage
Probentyp genomische DNS
Klinisch Untersuchungsmethoden Hochdurchsatz-Sequenzierung
Bearbeitungszeit 25 Tage
Probentyp genomische DNS
Forschung Untersuchungsmethoden Direkte Sequenzierung der proteinkodierenden Bereiche eines Gens
Bearbeitungszeit 25 Tage
Probentyp genomische DNS
Forschung Untersuchungsmethoden Multiplex ligationsabhängige Amplifikation
Bearbeitungszeit 25 Tage
Probentyp genomische DNS

Verknüpfte Erkrankungen:

Ektodermale Dysplasie mit Immundefekt 1
IKBKG
Ektodermale Dysplasie-Immundefekt-Anhidrose-Lymphödem-Syndrom
IKBKG
Immundefekt 33
IKBKG
X-chromosomale Suszeptibilität für Mykobakteriosen durch IKBKG-Defekt
IKBKG
Incontinentia pigmenti
IKBKG
Invasive Pneumokokken-Erkrankung 2
IKBKG

Referenzen:

1.

Matsuzawa A et al. (2008) Essential cytoplasmic translocation of a cytokine receptor-assembled signaling complex.

[^]
2.

Lie SO et al. (1978) Transient B cell immaturity with intractable diarrhoea: a possible new immunodeficiency syndrome.

[^]
3.

Roberts JL et al. (1998) Incontinentia pigmenti in a newborn male infant with DNA confirmation.

[^]
4.

Yamaoka S et al. (1998) Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation.

[^]
5.

Rothwarf DM et al. (1998) IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex.

[^]
6.

Li Y et al. (1999) Identification of a cell protein (FIP-3) as a modulator of NF-kappaB activity and as a target of an adenovirus inhibitor of tumor necrosis factor alpha-induced apoptosis.

[^]
7.

Jin DY et al. () Isolation of full-length cDNA and chromosomal localization of human NF-kappaB modulator NEMO to Xq28.

[^]
8.

Li Q et al. (1999) Severe liver degeneration in mice lacking the IkappaB kinase 2 gene.

[^]
9.

Rudolph D et al. (2000) Severe liver degeneration and lack of NF-kappaB activation in NEMO/IKKgamma-deficient mice.

[^]
10.

Smahi A et al. (2000) Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium.

[^]
11.

Makris C et al. (2000) Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti.

[^]
12.

Schmidt-Supprian M et al. (2000) NEMO/IKK gamma-deficient mice model incontinentia pigmenti.

[^]
13.

May MJ et al. (2000) Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex.

[^]
14.

Zonana J et al. (2000) A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO).

[^]
15.

Aradhya S et al. (2001) Atypical forms of incontinentia pigmenti in male individuals result from mutations of a cytosine tract in exon 10 of NEMO (IKK-gamma).

[^]
16.

Jain A et al. (2001) Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia.

[^]
17.

Döffinger R et al. (2001) X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling.

[^]
18.

Kosaki K et al. (2001) Female patient showing hypohidrotic ectodermal dysplasia and immunodeficiency (HED-ID).

[^]
19.

Aradhya S et al. (2001) A recurrent deletion in the ubiquitously expressed NEMO (IKK-gamma) gene accounts for the vast majority of incontinentia pigmenti mutations.

[^]
20.

Kenwrick S et al. (2001) Survival of male patients with incontinentia pigmenti carrying a lethal mutation can be explained by somatic mosaicism or Klinefelter syndrome.

[^]
21.

Aradhya S et al. (2001) Multiple pathogenic and benign genomic rearrangements occur at a 35 kb duplication involving the NEMO and LAGE2 genes.

[^]
22.

Orange JS et al. (2002) Deficient natural killer cell cytotoxicity in patients with IKK-gamma/NEMO mutations.

[^]
23.

None (2002) Pushing the limits of the scanning mechanism for initiation of translation.

[^]
24.

Bardaro T et al. (2003) Two cases of misinterpretation of molecular results in incontinentia pigmenti, and a PCR-based method to discriminate NEMO/IKKgamma dene deletion.

[^]
25.

Brummelkamp TR et al. (2003) Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB.

[^]
26.

Kovalenko A et al. (2003) The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination.

[^]
27.

Nishikomori R et al. (2004) X-linked ectodermal dysplasia and immunodeficiency caused by reversion mosaicism of NEMO reveals a critical role for NEMO in human T-cell development and/or survival.

[^]
28.

Fusco F et al. (2004) Molecular analysis of the genetic defect in a large cohort of IP patients and identification of novel NEMO mutations interfering with NF-kappaB activation.

[^]
29.

Orange JS et al. (2004) Human nuclear factor kappa B essential modulator mutation can result in immunodeficiency without ectodermal dysplasia.

[^]
30.

Niehues T et al. (2004) Nuclear factor kappaB essential modulator-deficient child with immunodeficiency yet without anhidrotic ectodermal dysplasia.

[^]
31.

Jain A et al. (2004) Specific NEMO mutations impair CD40-mediated c-Rel activation and B cell terminal differentiation.

[^]
32.

Martinez-Pomar N et al. (2005) A new mutation in exon 7 of NEMO gene: late skewed X-chromosome inactivation in an incontinentia pigmenti female patient with immunodeficiency.

[^]
33.

Ørstavik KH et al. (2006) Novel splicing mutation in the NEMO (IKK-gamma) gene with severe immunodeficiency and heterogeneity of X-chromosome inactivation.

[^]
34.

Vinolo E et al. (2006) A point mutation in NEMO associated with anhidrotic ectodermal dysplasia with immunodeficiency pathology results in destabilization of the oligomer and reduces lipopolysaccharide- and tumor necrosis factor-mediated NF-kappa B activation.

[^]
35.

Wu ZH et al. (2006) Molecular linkage between the kinase ATM and NF-kappaB signaling in response to genotoxic stimuli.

[^]
36.

Puel A et al. (2006) The NEMO mutation creating the most-upstream premature stop codon is hypomorphic because of a reinitiation of translation.

[^]
37.

Filipe-Santos O et al. (2006) X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production.

[^]
38.

Ku CL et al. (2007) IRAK4 and NEMO mutations in otherwise healthy children with recurrent invasive pneumococcal disease.

[^]
39.

Nenci A et. al. (2007) Epithelial NEMO links innate immunity to chronic intestinal inflammation.

[^]
40.

Singh A et al. (2009) Impaired priming and activation of the neutrophil NADPH oxidase in patients with IRAK4 or NEMO deficiency.

[^]
41.

Siggs OM et al. (2010) A mutation of Ikbkg causes immune deficiency without impairing degradation of IkappaB alpha.

[^]
42.

Takada H et al. (2010) NEMO mutation as a cause of familial occurrence of Behçet's disease in female patients.

[^]
43.

Gautheron J et al. (2010) Identification of a new NEMO/TRAF6 interface affected in incontinentia pigmenti pathology.

[^]
44.

Gerlach B et al. (2011) Linear ubiquitination prevents inflammation and regulates immune signalling.

[^]
45.

Tokunaga F et al. (2011) SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex.

[^]
46.

Ikeda F et al. (2011) SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis.

[^]
47.

Chiu JC et al. (2011) NEMO/NLK phosphorylates PERIOD to initiate a time-delay phosphorylation circuit that sets circadian clock speed.

[^]
48.

Fusco F et al. (2012) Genomic architecture at the Incontinentia Pigmenti locus favours de novo pathological alleles through different mechanisms.

[^]
49.

Boisson B et al. (2019) Rescue of recurrent deep intronic mutation underlying cell type-dependent quantitative NEMO deficiency.

[^]
Update: 17. Oktober 2019