Molekulargenetisches Labor
Zentrum für Nephrologie und Stoffwechsel
Moldiag Erkrankungen Gene Support Kontakt

GTPase HRas

Das HRAS ist ein Onkogen, welches eine GTPase kodiert. Keimbahnmutationen führen zum autosomal dominanten Costello-Syndrom, während somatische Mutationen bei Schilddrüsenkarzinomen gesehen werden.

Gentests:

Klinisch Untersuchungsmethoden Familienuntersuchung
Bearbeitungszeit 5 Tage
Probentyp genomische DNS
Klinisch Untersuchungsmethoden Hochdurchsatz-Sequenzierung
Bearbeitungszeit 25 Tage
Probentyp genomische DNS
Forschung Untersuchungsmethoden Direkte Sequenzierung der proteinkodierenden Bereiche eines Gens
Bearbeitungszeit 25 Tage
Probentyp genomische DNS
Forschung Untersuchungsmethoden Multiplex ligationsabhängige Amplifikation
Bearbeitungszeit 25 Tage
Probentyp genomische DNS

Verknüpfte Erkrankungen:

Folliculäres Schilddrüsenkarzinom
HRAS
NRAS

Referenzen:

1.

Weijzen S et al. (2002) Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells.

external link
2.

Di Micco R et al. (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication.

external link
3.

Zampino G et al. (2007) Diversity, parental germline origin, and phenotypic spectrum of de novo HRAS missense changes in Costello syndrome.

external link
4.

Zhang X et al. (2006) The HBP1 transcriptional repressor participates in RAS-induced premature senescence.

external link
5.

Sol-Church K et al. (2006) Paternal bias in parental origin of HRAS mutations in Costello syndrome.

external link
6.

Kerr B et al. (2006) Genotype-phenotype correlation in Costello syndrome: HRAS mutation analysis in 43 cases.

external link
7.

Gripp KW et al. (2006) HRAS mutation analysis in Costello syndrome: genotype and phenotype correlation.

external link
8.

Aoki Y et al. (2005) Germline mutations in HRAS proto-oncogene cause Costello syndrome.

external link
9.

Stassou S et al. (2005) A new syndrome of myopathy with muscle spindle excess.

external link
10.

Zutt M et al. (2003) Schimmelpenning-Feuerstein-Mims syndrome with hypophosphatemic rickets.

external link
11.

Zhu JJ et al. (2002) Ras and Rap control AMPA receptor trafficking during synaptic plasticity.

external link
12.

van der Burgt I et al. (2007) Myopathy caused by HRAS germline mutations: implications for disturbed myogenic differentiation in the presence of constitutive HRas activation.

external link
13.

Oft M et al. (2002) Metastasis is driven by sequential elevation of H-ras and Smad2 levels.

external link
14.

Mochizuki N et al. (2001) Spatio-temporal images of growth-factor-induced activation of Ras and Rap1.

external link
15.

Selcen D et al. (2001) Myopathy with muscle spindle excess: A new congenital neuromuscular syndrome?

external link
16.

Hahn WC et al. (1999) Creation of human tumour cells with defined genetic elements.

external link
17.

Sears R et al. (1999) Ras enhances Myc protein stability.

external link
18.

de Boode WP et al. (1996) Myopathology in patients with a Noonan phenotype.

external link
19.

Russell MW et al. (1996) A 500-kb physical map and contig from the Harvey ras-1 gene to the 11p telomere.

external link
20.

Phelan CM et al. (1996) Ovarian cancer risk in BRCA1 carriers is modified by the HRAS1 variable number of tandem repeat (VNTR) locus.

external link
21.

Bianchi AB et al. (1993) Reassignment of the H-ras-1 gene to the Hbb-terminus region of mouse chromosome 7.

external link
22.

Piccione M et al. (2009) A premature infant with Costello syndrome due to a rare G13C HRAS mutation.

external link
23.

Sarin KY et al. (2014) Activating HRAS mutation in nevus spilus.

external link
24.

Levinsohn JL et al. (2014) Somatic HRAS p.G12S mutation causes woolly hair and epidermal nevi.

external link
25.

Sarin KY et al. (2013) Activating HRAS mutation in agminated Spitz nevi arising in a nevus spilus.

external link
26.

Lorenz S et al. (2013) Functional analysis of a duplication (p.E63_D69dup) in the switch II region of HRAS: new aspects of the molecular pathogenesis underlying Costello syndrome.

external link
27.

Groesser L et al. (2012) Postzygotic HRAS and KRAS mutations cause nevus sebaceous and Schimmelpenning syndrome.

external link
28.

Hafner C et al. (2011) HRAS mutation mosaicism causing urothelial cancer and epidermal nevus.

external link
29.

Gripp KW et al. (2011) Phenotypic analysis of individuals with Costello syndrome due to HRAS p.G13C.

external link
30.

Gremer L et al. (2010) Duplication of Glu37 in the switch I region of HRAS impairs effector/GAP binding and underlies Costello syndrome by promoting enhanced growth factor-dependent MAPK and AKT activation.

external link
31.

Gough DJ et al. (2009) Mitochondrial STAT3 supports Ras-dependent oncogenic transformation.

external link
32.

Dajee M et al. (2003) NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia.

external link
33.

To MD et al. (2008) Kras regulatory elements and exon 4A determine mutation specificity in lung cancer.

external link
34.

Kuniba H et al. (2009) Prenatal diagnosis of Costello syndrome using 3D ultrasonography amniocentesis confirmation of the rare HRAS mutation G12D.

external link
35.

Lu CW et al. (2008) Ras-MAPK signaling promotes trophectoderm formation from embryonic stem cells and mouse embryos.

external link
36.

McMurray HR et al. (2008) Synergistic response to oncogenic mutations defines gene class critical to cancer phenotype.

external link
37.

Schuhmacher AJ et al. (2008) A mouse model for Costello syndrome reveals an Ang II-mediated hypertensive condition.

external link
38.

Gripp KW et al. (2008) Costello syndrome associated with novel germline HRAS mutations: an attenuated phenotype?

external link
39.

Lo IF et al. (2008) Severe neonatal manifestations of Costello syndrome.

external link
40.

Denayer E et al. (2008) Mutation analysis in Costello syndrome: functional and structural characterization of the HRAS p.Lys117Arg mutation.

external link
41.

Stites EC et al. (2007) Network analysis of oncogenic Ras activation in cancer.

external link
42.

Lim YH et al. (2014) Multilineage somatic activating mutations in HRAS and NRAS cause mosaic cutaneous and skeletal lesions, elevated FGF23 and hypophosphatemia.

external link
43.

Hiwasa T et al. (1988) Inhibition of cathepsin L-induced degradation of epidermal growth factor receptors by c-Ha-ras gene products.

external link
44.

Stallings RL et al. (1986) Assignment of RAS proto-oncogenes in Chinese hamsters: implications for mammalian gene linkage conservation and neoplasia.

external link
45.

Ishii S et al. (1985) Promoter region of the human Harvey ras proto-oncogene: similarity to the EGF receptor proto-oncogene promoter.

external link
46.

Greenhalgh DA et al. (1985) c-Ha-ras not c-Ki-ras activation in three colon tumour cell lines.

external link
47.

Fujita J et al. (1985) Frequency of molecular alterations affecting ras protooncogenes in human urinary tract tumors.

external link
48.

Corell B et al. (1988) Comparison between the allelic frequency distribution of the Ha-ras 1 locus in normal individuals and patients with lymphoma, breast, and ovarian cancer.

external link
49.

Tong LA et al. (1989) Structural differences between a ras oncogene protein and the normal protein.

external link
50.

None (1989) ras oncogenes in human cancer: a review.

external link
51.

Ryberg D et al. (1990) Ha-ras-1 alleles in Norwegian lung cancer patients.

external link
52.

Chaganti RS et al. (1985) Germ-line chromosomal localization of genes in chromosome 11p linkage: parathyroid hormone, beta-globin, c-Ha-ras-1, and insulin.

external link
53.

Taparowsky E et al. (1982) Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change.

external link
54.

Hafner C et al. (2012) Keratinocytic epidermal nevi are associated with mosaic RAS mutations.

external link
55.

Johnson SM et al. (2005) RAS is regulated by the let-7 microRNA family.

external link
56.

Rocks O et al. (2005) An acylation cycle regulates localization and activity of palmitoylated Ras isoforms.

external link
57.

Vasko V et al. (2003) Specific pattern of RAS oncogene mutations in follicular thyroid tumors.

external link
58.

Matallanas D et al. (2003) Differences on the inhibitory specificities of H-Ras, K-Ras, and N-Ras (N17) dominant negative mutants are related to their membrane microlocalization.

external link
59.

Popescu NC et al. (1985) Chromosomal localization of three human ras genes by in situ molecular hybridization.

external link
60.

Nikiforova MN et al. (2003) RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma.

external link
61.

Ancrile B et al. (2007) Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis.

external link
62.

Goriely A et al. (2009) Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors.

external link
63.

Srivastava SK et al. (1985) Effects of two major activating lesions on the structure and conformation of human ras oncogene products.

external link
64.

Krontiris TG et al. (1993) An association between the risk of cancer and mutations in the HRAS1 minisatellite locus.

external link
65.

Gibbs JB et al. (1984) Autophosphorylation of v-Ha-ras p21 is modulated by amino acid residue 12.

external link
66.

Pincus MR et al. (1983) Prediction of the three-dimensional structure of the transforming region of the EJ/T24 human bladder oncogene product and its normal cellular homologue.

external link
67.

Muschel RJ et al. (1983) The human c-ras1H oncogene: a mutation in normal and neoplastic tissue from the same patient.

external link
68.

Fasano O et al. (1984) Analysis of the transforming potential of the human H-ras gene by random mutagenesis.

external link
69.

Fearon ER et al. (1984) c-Ha-ras-1 oncogene lies between beta-globin and insulin loci on human chromosome 11p.

external link
70.

Jhanwar SC et al. (1983) Localization of c-ras oncogene family on human germ-line chromosomes.

external link
71.

Feinberg AP et al. (1983) Mutation affecting the 12th amino acid of the c-Ha-ras oncogene product occurs infrequently in human cancer.

external link
72.

Capon DJ et al. (1983) Complete nucleotide sequences of the T24 human bladder carcinoma oncogene and its normal homologue.

external link
73.

Goyette M et al. (1983) Expression of a cellular oncogene during liver regeneration.

external link
74.

de Martinville B et al. (1983) Oncogene from human EJ bladder carcinoma is located on the short arm of chromosome 11.

external link
75.

Chang EH et al. (1982) Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses.

external link
76.

Der CJ et al. (1982) Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses.

external link
77.

Wong-Staal F et al. (1981) Three distinct genes in human DNA related to the transforming genes of mammalian sarcoma retroviruses.

external link
78.

Fisher JH et al. (1984) Wilms' tumor-aniridia association: segregation of affected chromosome in somatic cell hybrids, identification of cell surface antigen associated with deleted area, and regional mapping of c-Ha-ras-1 oncogene, insulin gene, and beta-globin gene.

external link
79.

Sekiya T et al. (1984) Molecular cloning and the total nucleotide sequence of the human c-Ha-ras-1 gene activated in a melanoma from a Japanese patient.

external link
80.

Eccles MR et al. (1984) Harvey-ras allele deletion detected by in situ hybridization to Wilms' tumor chromosomes.

external link
81.

Yokota J et al. (1986) Alterations of myc, myb, and rasHa proto-oncogenes in cancers are frequent and show clinical correlation.

external link
82.

Colby WW et al. (1986) Biochemical characterization of polypeptides encoded by mutated human Ha-ras1 genes.

external link
83.

NCBI article

NCBI 3265 external link
84.

OMIM.ORG article

Omim 190020 external link
85.

Orphanet article

Orphanet ID 122499 external link
Update: 14. August 2020
Copyright © 2005-2020 Zentrum für Nephrologie und Stoffwechsel, Dr. Mato Nagel
Albert-Schweitzer-Ring 32, D-02943 Weißwasser, Deutschland, Tel.: +49-3576-287922, Fax: +49-3576-287944
Seitenüberblick | Webmail | Haftungsausschluss | Datenschutz