Molekulargenetisches Labor
Zentrum für Nephrologie und Stoffwechsel
Moldiag Erkrankungen Gene Support Kontakt

Forkhead-box Protein C1

Das FOXC1-Gen kodiert einen Transkriptionsfaktor der in eine frühe Entwicklungsphase der Augen eingreift. Mutation führen zur autosomal dominanten Axenfeld-Rieger Anomalie.

Gentests:

Forschung Untersuchungsmethoden Familienuntersuchung
Bearbeitungszeit 5 Tage
Probentyp genomische DNS
Klinisch Untersuchungsmethoden Hochdurchsatz-Sequenzierung
Bearbeitungszeit 25 Tage
Probentyp genomische DNS
Forschung Untersuchungsmethoden Direkte Sequenzierung der proteinkodierenden Bereiche eines Gens
Bearbeitungszeit 25 Tage
Probentyp genomische DNS
Forschung Untersuchungsmethoden Multiplex ligationsabhängige Amplifikation
Bearbeitungszeit 25 Tage
Probentyp genomische DNS

Verknüpfte Erkrankungen:

Axenfeld-Rieger Anomalie
FOXC1

Referenzen:

1.

Nishimura DY et al. (1998) The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25.

external link
2.

Omatsu Y et al. (2014) Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation.

external link
3.

Fetterman CD et al. (2009) Characterization of a novel FOXC1 mutation, P297S, identified in two individuals with anterior segment dysgenesis.

external link
4.

Berry FB et al. (2008) FOXC1 is required for cell viability and resistance to oxidative stress in the eye through the transcriptional regulation of FOXO1A.

external link
5.

Zarbalis K et al. (2007) Cortical dysplasia and skull defects in mice with a Foxc1 allele reveal the role of meningeal differentiation in regulating cortical development.

external link
6.

Berry FB et al. (2006) Functional interactions between FOXC1 and PITX2 underlie the sensitivity to FOXC1 gene dose in Axenfeld-Rieger syndrome and anterior segment dysgenesis.

external link
7.

Lin RJ et al. (2005) Terminal deletion of 6p results in a recognizable phenotype.

external link
8.

Descipio C et al. (2005) Subtelomeric deletions of chromosome 6p: molecular and cytogenetic characterization of three new cases with phenotypic overlap with Ritscher-Schinzel (3C) syndrome.

external link
9.

Maclean K et al. (2005) Axenfeld-Rieger malformation and distinctive facial features: Clues to a recognizable 6p25 microdeletion syndrome.

external link
10.

Saleem RA et al. (2003) Structural and functional analyses of disease-causing missense mutations in the forkhead domain of FOXC1.

external link
11.

Libby RT et al. (2003) Modification of ocular defects in mouse developmental glaucoma models by tyrosinase.

external link
12.

Lines MA et al. (2002) Molecular genetics of Axenfeld-Rieger malformations.

external link
13.

Kume T et al. (2001) The murine winged helix transcription factors, Foxc1 and Foxc2, are both required for cardiovascular development and somitogenesis.

external link
14.

Saleem RA et al. (2001) Analyses of the effects that disease-causing missense mutations have on the structure and function of the winged-helix protein FOXC1.

external link
15.

Lehmann OJ et al. (2000) Chromosomal duplication involving the forkhead transcription factor gene FOXC1 causes iris hypoplasia and glaucoma.

external link
16.

Smith RS et al. (2000) Haploinsufficiency of the transcription factors FOXC1 and FOXC2 results in aberrant ocular development.

external link
17.

Kume T et al. (1998) The forkhead/winged helix gene Mf1 is disrupted in the pleiotropic mouse mutation congenital hydrocephalus.

external link
18.

Gould DB et al. (1997) Autosomal dominant Axenfeld-Rieger anomaly maps to 6p25.

external link
19.

Mears AJ et al. (1998) Mutations of the forkhead/winged-helix gene, FKHL7, in patients with Axenfeld-Rieger anomaly.

external link
20.

Mirzayans F et al. (2000) Axenfeld-Rieger syndrome resulting from mutation of the FKHL7 gene on chromosome 6p25.

external link
21.

Nishimura DY et al. (2001) A spectrum of FOXC1 mutations suggests gene dosage as a mechanism for developmental defects of the anterior chamber of the eye.

external link
22.

Lehmann OJ et al. (2002) Ocular developmental abnormalities and glaucoma associated with interstitial 6p25 duplications and deletions.

external link
23.

Honkanen RA et al. (2003) A family with Axenfeld-Rieger syndrome and Peters Anomaly caused by a point mutation (Phe112Ser) in the FOXC1 gene.

external link
24.

Ito YA et al. (2007) Analyses of a novel L130F missense mutation in FOXC1.

external link
25.

Weisschuh N et al. (2008) A novel mutation in the FOXC1 gene in a family with Axenfeld-Rieger syndrome and Peters' anomaly.

external link
26.

Chanda B et al. (2008) A novel mechanistic spectrum underlies glaucoma-associated chromosome 6p25 copy number variation.

external link
27.

Aldinger KA et al. (2009) FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation.

external link
28.

Pearce WG et al. (1982) Autosomal dominant iridogoniodysgenesis. A genetic and clinical study.

external link
29.

Pierrou S et al. (1994) Cloning and characterization of seven human forkhead proteins: binding site specificity and DNA bending.

external link
30.

Larsson C et al. (1995) Chromosomal localization of six human forkhead genes, freac-1 (FKHL5), -3 (FKHL7), -4 (FKHL8), -5 (FKHL9), -6 (FKHL10), and -8 (FKHL12).

external link
31.

Hong HK et al. (1999) Pleiotropic skeletal and ocular phenotypes of the mouse mutation congenital hydrocephalus (ch/Mf1) arise from a winged helix/forkhead transcriptionfactor gene.

external link
32.

Orphanet article

Orphanet ID 121883 external link
33.

NCBI article

NCBI 2296 external link
34.

OMIM.ORG article

Omim 601090 external link
Update: 14. August 2020
Copyright © 2005-2020 Zentrum für Nephrologie und Stoffwechsel, Dr. Mato Nagel
Albert-Schweitzer-Ring 32, D-02943 Weißwasser, Deutschland, Tel.: +49-3576-287922, Fax: +49-3576-287944
Seitenüberblick | Webmail | Haftungsausschluss | Datenschutz