Molekulargenetisches Labor
Zentrum für Nephrologie und Stoffwechsel

Spannungsabhängiger Kaliumkanal Unterfamilie H Member 2

das KCNH2-gen kodiert einen Kaliumkanal der für die Reizleitung am Herzen eine besondere Bedeutung besitzt. Mutationen führen zu autosomal dominanten Herzrhythmusstörungen wie dem Long- und dem Short-QT-Syndrom.

Gentests:

Klinisch Untersuchungsmethoden Familienuntersuchung
Bearbeitungszeit 5 Tage
Probentyp genomische DNS
Klinisch Untersuchungsmethoden Hochdurchsatz-Sequenzierung
Bearbeitungszeit 25 Tage
Probentyp genomische DNS
Forschung Untersuchungsmethoden Direkte Sequenzierung der proteinkodierenden Bereiche eines Gens
Bearbeitungszeit 25 Tage
Probentyp genomische DNS
Forschung Untersuchungsmethoden Multiplex ligationsabhängige Amplifikation
Bearbeitungszeit 25 Tage
Probentyp genomische DNS

Verknüpfte Erkrankungen:

Short-QT-Syndrom 1
KCNH2
Long-QT-Syndrom 02
KCNH2

Referenzen:

1.

Zareba W et al. (1998) Influence of genotype on the clinical course of the long-QT syndrome. International Long-QT Syndrome Registry Research Group.

[^]
2.

Priori SG et al. (1999) Low penetrance in the long-QT syndrome: clinical impact.

[^]
3.

Berthet M et al. (1999) C-terminal HERG mutations: the role of hypokalemia and a KCNQ1-associated mutation in cardiac event occurrence.

[^]
4.

Jongbloed RJ et al. (1999) Novel KCNQ1 and HERG missense mutations in Dutch long-QT families.

[^]
5.

Splawski I et al. (2000) Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2.

[^]
6.

Yang P et al. (2002) Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes.

[^]
7.

Westenskow P et al. (2004) Compound mutations: a common cause of severe long-QT syndrome.

[^]
8.

Tester DJ et al. (2005) Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing.

[^]
9.

Millat G et al. (2006) Spectrum of pathogenic mutations and associated polymorphisms in a cohort of 44 unrelated patients with long QT syndrome.

[^]
10.

Curran ME et al. (1995) A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome.

[^]
11.

Zhou Z et al. (1998) HERG channel dysfunction in human long QT syndrome. Intracellular transport and functional defects.

[^]
12.

Moss AJ et al. (2002) Increased risk of arrhythmic events in long-QT syndrome with mutations in the pore region of the human ether-a-go-go-related gene potassium channel.

[^]
13.

Lees-Miller JP et al. (2003) Selective knockout of mouse ERG1 B potassium channel eliminates I(Kr) in adult ventricular myocytes and elicits episodes of abrupt sinus bradycardia.

[^]
14.

Amin AS et al. (2008) Fever-induced QTc prolongation and ventricular arrhythmias in individuals with type 2 congenital long QT syndrome.

[^]
15.

Itzhaki I et al. (2011) Modelling the long QT syndrome with induced pluripotent stem cells.

[^]
16.

Hong K et al. (2005) Short QT syndrome and atrial fibrillation caused by mutation in KCNH2.

[^]
17.

Gussak I et al. (2000) Idiopathic short QT interval: a new clinical syndrome?

[^]
18.

Gaita F et al. (2003) Short QT Syndrome: a familial cause of sudden death.

[^]
19.

Brugada R et al. (2004) Sudden death associated with short-QT syndrome linked to mutations in HERG.

[^]
20.

Trudeau MC et al. (1995) HERG, a human inward rectifier in the voltage-gated potassium channel family.

[^]
21.

Sanguinetti MC et al. (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel.

[^]
22.

Warmke JW et al. (1994) A family of potassium channel genes related to eag in Drosophila and mammals.

[^]
23.

Thomas PJ et al. (1995) Defective protein folding as a basis of human disease.

[^]
24.

None (1996) The inconstancy of the human heart.

[^]
25.

Smith PL et al. (1996) The inward rectification mechanism of the HERG cardiac potassium channel.

[^]
26.

Benson DW et al. (1996) Missense mutation in the pore region of HERG causes familial long QT syndrome.

[^]
27.

Satler CA et al. (1996) Novel missense mutation in the cyclic nucleotide-binding domain of HERG causes long QT syndrome.

[^]
28.

Li X et al. (1997) The human delta1261 mutation of the HERG potassium channel results in a truncated protein that contains a subunit interaction domain and decreases the channel expression.

[^]
29.

Tanaka T et al. (1997) Four novel KVLQT1 and four novel HERG mutations in familial long-QT syndrome.

[^]
30.

Satler CA et al. (1998) Multiple different missense mutations in the pore region of HERG in patients with long QT syndrome.

[^]
31.

Itoh T et al. (1998) Genomic organization and mutational analysis of HERG, a gene responsible for familial long QT syndrome.

[^]
32.

Splawski I et al. (1998) Genomic structure of three long QT syndrome genes: KVLQT1, HERG, and KCNE1.

[^]
33.

Larsen LA et al. (2000) Long QT syndrome with a high mortality rate caused by a novel G572R missense mutation in KCNH2.

[^]
34.

Kagan A et al. (2000) The dominant negative LQT2 mutation A561V reduces wild-type HERG expression.

[^]
35.

Nakajima T et al. (2000) Characterization of S818L mutation in HERG C-terminus in LQT2. Modification of activation-deactivation gating properties.

[^]
36.

Yoshida H et al. (2001) Bradycardia-induced long QT syndrome caused by a de novo missense mutation in the S2-S3 inner loop of HERG.

[^]
37.

Kupershmidt S et al. (2002) Defective human Ether-à-go-go-related gene trafficking linked to an endoplasmic reticulum retention signal in the C terminus.

[^]
38.

Paulussen A et al. (2002) A novel mutation (T65P) in the PAS domain of the human potassium channel HERG results in the long QT syndrome by trafficking deficiency.

[^]
39.

Johnson WH et al. (2003) Clinical, genetic, and biophysical characterization of a homozygous HERG mutation causing severe neonatal long QT syndrome.

[^]
40.

Ficker E et al. (2003) Role of the cytosolic chaperones Hsp70 and Hsp90 in maturation of the cardiac potassium channel HERG.

[^]
41.

Gong Q et al. (2005) Degradation of trafficking-defective long QT syndrome type II mutant channels by the ubiquitin-proteasome pathway.

[^]
42.

Gong Q et al. (2006) Mechanisms of pharmacological rescue of trafficking-defective hERG mutant channels in human long QT syndrome.

[^]
43.

Vatta M et al. (2006) Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome.

[^]
44.

Xiao J et al. (2007) MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts.

[^]
45.

Tenenbaum M et al. (2008) Identification of the gene causing long QT syndrome in an Israeli family.

[^]
46.

Huffaker SJ et al. (2009) A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia.

[^]
47.

Rihel J et al. (2010) Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation.

[^]
48.

Gianulis EC et al. (2011) Rescue of aberrant gating by a genetically encoded PAS (Per-Arnt-Sim) domain in several long QT syndrome mutant human ether-á-go-go-related gene potassium channels.

[^]
49.

Orphanet article

Orphanet ID 122777 [^]
50.

NCBI article

NCBI 3757 [^]
51.

OMIM.ORG article

Omim 152427 [^]
52.

Wikipedia Artikel

Wikipedia DE (HERG-Kanal) [^]
Update: 29. April 2019