Molekulargenetisches Labor
Zentrum für Nephrologie und Stoffwechsel

Präeklampsie

Die Präeklampsie ist eine Erkrankung der Schwangerschaft. Nach der 20. Schwangerschaftswoche kommt es es zu einem Blutdruckanstieg und zu einer Proteinurie. Im weiteren Verlauf kann sich die Erkrankung in eine lebensbedrohliche Situation (Eklampsie) entwickeln. Ursächlich scheinen genetische Faktoren und auch STörungen der Komplementregulation eine Rolle zu spielen.

Gliederung

Erblicher Bluthochdruck
ACE
ACE2
AGT
Benigne Hyperproreninämie
Monogener Hypertonus
Präeklampsie
APOL1
Präeklampsie 1
Präeklampsie 2
Präeklampsie 3
Präeklampsie 4
STOX1
Präeklampsie 5
CORIN
Salzsensitiver essentieller Hypertonus
VEGFC

Referenzen:

1.

Hillermann R et al. (2005) The Glu298Asp variant of the endothelial nitric oxide synthase gene is associated with an increased risk for abruptio placentae in pre-eclampsia.

[^]
2.

Wallukat G et al. (1999) Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor.

[^]
3.

Reidy KJ et al. (2018) Fetal-Not Maternal-APOL1 Genotype Associated with Risk for Preeclampsia in Those with African Ancestry.

[^]
4.

Dries DL et al. (2005) Corin gene minor allele defined by 2 missense mutations is common in blacks and associated with high blood pressure and hypertension.

[^]
5.

Wang W et al. (2008) Corin variant associated with hypertension and cardiac hypertrophy exhibits impaired zymogen activation and natriuretic peptide processing activity.

[^]
6.

Dong N et al. (2013) Corin mutation R539C from hypertensive patients impairs zymogen activation and generates an inactive alternative ectodomain fragment.

[^]
7.

Pan J et al. (2002) Genomic structures of the human and murine corin genes and functional GATA elements in their promoters.

[^]
8.

Knappe S et al. (2003) Functional analysis of the transmembrane domain and activation cleavage of human corin: design and characterization of a soluble corin.

[^]
9.

Guipponi M et al. (2008) An integrated genetic and functional analysis of the role of type II transmembrane serine proteases (TMPRSSs) in hearing loss.

[^]
10.

Cui Y et al. (2012) Role of corin in trophoblast invasion and uterine spiral artery remodelling in pregnancy.

[^]
11.

Dong N et al. (2014) Corin mutations K317E and S472G from preeclamptic patients alter zymogen activation and cell surface targeting. [Corrected].

[^]
12.

Laivuori H et al. (2003) Susceptibility loci for preeclampsia on chromosomes 2p25 and 9p13 in Finnish families.

[^]
13.

Chesley LC et al. (1968) The familial factor in toxemia of pregnancy.

[^]
14.

None (1980) Genetic control of pre-eclampsia.

[^]
15.

Fisher KA et al. (1981) Hypertension in pregnancy: clinical-pathological correlations and remote prognosis.

[^]
16.

Van Meter TD et al. (1993) Concerns about the genetics of pre-eclampsia.

[^]
17.

Brenner B et al. (1996) HELLP syndrome associated with factor V R506Q mutation.

[^]
18.

Harrison GA et al. (1997) A genomewide linkage study of preeclampsia/eclampsia reveals evidence for a candidate region on 4q.

[^]
19.

Sohda S et al. (1997) Methylenetetrahydrofolate reductase polymorphism and pre-eclampsia.

[^]
20.

Arngrímsson R et al. (1997) Evidence for a familial pregnancy-induced hypertension locus in the eNOS-gene region.

[^]
21.

Lindqvist PG et al. (1998) Factor V Q506 mutation (activated protein C resistance) associated with reduced intrapartum blood loss--a possible evolutionary selection mechanism.

[^]
22.

Kupferminc MJ et al. (1999) Increased frequency of genetic thrombophilia in women with complications of pregnancy.

[^]
23.

Thornton JG et al. (1999) Twin mothers, pregnancy hypertension and pre-eclampsia.

[^]
24.

Arngrímsson R et al. (1999) A genome-wide scan reveals a maternal susceptibility locus for pre-eclampsia on chromosome 2p13.

[^]
25.

Zusterzeel PL et al. (1999) Glutathione S-transferase isoenzymes in decidua and placenta of preeclamptic pregnancies.

[^]
26.

Rajkovic A et al. (2000) Methylenetetrahydrofolate reductase 677 C --> T polymorphism, plasma folate, vitamin B(12) concentrations, and risk of preeclampsia among black African women from Zimbabwe.

[^]
27.

Napolitano M et al. (2000) Expression and relationship between endothelin-1 messenger ribonucleic acid (mRNA) and inducible/endothelial nitric oxide synthase mRNA isoforms from normal and preeclamptic placentas.

[^]
28.

Page NM et al. (2000) Excessive placental secretion of neurokinin B during the third trimester causes pre-eclampsia.

[^]
29.

Brown MA et al. (2000) The detection, investigation and management of hypertension in pregnancy: full consensus statement.

[^]
30.

Moses EK et al. (2000) A genome scan in families from Australia and New Zealand confirms the presence of a maternal susceptibility locus for pre-eclampsia, on chromosome 2.

[^]
31.

Roberts JM et al. (2001) Pathogenesis and genetics of pre-eclampsia.

[^]
32.

Esplin MS et al. (2001) Paternal and maternal components of the predisposition to preeclampsia.

[^]
33.

Zusterzeel PL et al. (2001) A polymorphism in the gene for microsomal epoxide hydrolase is associated with pre-eclampsia.

[^]
34.

Lachmeijer AM et al. (2001) A genome-wide scan for preeclampsia in the Netherlands.

[^]
35.

Zusterzeel PL et al. (2002) Paternal contribution to the risk for pre-eclampsia.

[^]
36.

Laasanen J et al. (2002) Two exonic single nucleotide polymorphisms in the microsomal epoxide hydrolase gene are jointly associated with preeclampsia.

[^]
37.

Maynard SE et al. (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia.

[^]
38.

None (2003) The genetics of pre-eclampsia: a feto-placental or maternal problem?

[^]
39.

Faisel F et al. (2004) Susceptibility to pre-eclampsia in Finnish women is associated with R485K polymorphism in the factor V gene, not with Leiden mutation.

[^]
40.

Levine RJ et al. (2004) Circulating angiogenic factors and the risk of preeclampsia.

[^]
41.

Cnattingius S et al. (2004) Maternal and fetal genetic factors account for most of familial aggregation of preeclampsia: a population-based Swedish cohort study.

[^]
42.

Hiby SE et al. (2004) Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success.

[^]
43.

None (2005) Disentangling fetal and maternal susceptibility for pre-eclampsia: a British multicenter candidate-gene study.

[^]
44.

Uz E et al. (2007) Extremely skewed X-chromosome inactivation is increased in pre-eclampsia.

[^]
45.

Kanasaki K et al. (2008) Deficiency in catechol-O-methyltransferase and 2-methoxyoestradiol is associated with pre-eclampsia.

[^]
46.

Berends AL et al. (2008) Familial aggregation of preeclampsia and intrauterine growth restriction in a genetically isolated population in The Netherlands.

[^]
47.

Zhou CC et al. (2008) Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice.

[^]
48.

Payne B et al. (2011) Assessment, surveillance and prognosis in pre-eclampsia.

[^]
49.

Uzan J et al. (2011) Pre-eclampsia: pathophysiology, diagnosis, and management.

[^]
50.

van Dijk M et al. (2012) HELLP babies link a novel lincRNA to the trophoblast cell cycle.

[^]
51.

Oudejans CB et al. (2015) Susceptibility allele-specific loss of miR-1324-mediated silencing of the INO80B chromatin-assembly complex gene in pre-eclampsia.

[^]
52.

Orphanet article

Orphanet ID 275555 [^]
53.

Wikipedia Artikel

Wikipedia DE (Eklampsie) [^]
Update: 29. April 2019