Molekulargenetisches Labor
Zentrum für Nephrologie und Stoffwechsel
Moldiag Erkrankungen Gene Support Kontakt

Epigenetische Dyslipidämie

Epigenetische Dyslipidämien sind Fettstoffwechselstörungen, bei denen die Ursache in epigenetischen Veränderungen liegen. Diese Veränderungen können sich im Laufe des Lebens ändern und vererbt werden. Es handelt sich dabei vor allem um Methylierungen in regulatorischen Bereichen.

Gliederung

Dyslipidämie
Apolipoprotein-Mangel
Betalipoprotein-Mangel
Epigenetische Dyslipidämie
ABCG1
CPT1A
MIR33B
SREBF1
TNIP1
TNNT1
Hyperalphalipoproteinämie 1
Hyperalphalipoproteinämie 2
Hyperlipämie
Hypoalphalipoproteinämie
Hypobetalipoproteinemie

Referenzen:

1.

Lloyd DJ et al. (2002) A novel interaction between lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies.

external link
2.

Wang X et al. (2005) Cellular fate of truncated slow skeletal muscle troponin T produced by Glu180 nonsense mutation in amish nemaline myopathy.

external link
3.

Jin JP et al. (2003) Truncation by Glu180 nonsense mutation results in complete loss of slow skeletal muscle troponin T in a lethal nemaline myopathy.

external link
4.

Johnston JJ et al. (2000) A novel nemaline myopathy in the Amish caused by a mutation in troponin T1.

external link
5.

Barton PJ et al. (1999) Close physical linkage of human troponin genes: organization, sequence, and expression of the locus encoding cardiac troponin I and slow skeletal troponin T.

external link
6.

Samson F et al. (1994) A new human slow skeletal troponin T (TnTs) mRNA isoform derived from alternative splicing of a single gene.

external link
7.

Nadal-Ginard B et al. (1989) Molecular basis of cardiac performance. Plasticity of the myocardium generated through protein isoform switches.

external link
8.

Samson F et al. (1990) Isolation and localization of a slow troponin (TnT) gene on chromosome 19 by subtraction hybridization of a cDNA muscle library using myotonic dystrophy muscle cDNA.

external link
9.

Novelli G et al. (1992) Assignment of the slow troponin T (TNNT1) gene to chromosome 19 using polymerase chain reaction.

external link
10.

Samson F et al. (1992) Assignment of the human slow skeletal troponin T gene to 19q13.4 using somatic cell hybrids and fluorescence in situ hybridization analysis.

external link
11.

Han J et al. (2015) The CREB coactivator CRTC2 controls hepatic lipid metabolism by regulating SREBP1.

external link
12.

Cui G et al. (2011) Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation.

external link
13.

Najafi-Shoushtari SH et al. (2010) MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis.

external link
14.

Taghibiglou C et al. (2009) Role of NMDA receptor-dependent activation of SREBP1 in excitotoxic and ischemic neuronal injuries.

external link
15.

Yang F et al. (2006) An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis.

external link
16.

Bengoechea-Alonso MT et al. (2005) Hyperphosphorylation regulates the activity of SREBP1 during mitosis.

external link
17.

Lin J et al. (2005) Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP.

external link
18.

Nagata R et al. (2004) Single nucleotide polymorphism (-468 Gly to A) at the promoter region of SREBP-1c associates with genetic defect of fructose-induced hepatic lipogenesis [corrected].

external link
19.

Trask B et al. (1993) Fluorescence in situ hybridization mapping of human chromosome 19: cytogenetic band location of 540 cosmids and 70 genes or DNA markers.

external link
20.

OMIM.ORG article

Omim 600528 external link
Update: 14. August 2020
Copyright © 2005-2020 Zentrum für Nephrologie und Stoffwechsel, Dr. Mato Nagel
Albert-Schweitzer-Ring 32, D-02943 Weißwasser, Deutschland, Tel.: +49-3576-287922, Fax: +49-3576-287944
Seitenüberblick | Webmail | Haftungsausschluss | Datenschutz