Molekulargenetisches Labor
Zentrum für Nephrologie und Stoffwechsel
Moldiag Erkrankungen Gene Support Kontakt

Conn-Syndrom

Das Conn-Syndrom, der Hyperaldosteronismus, der sich im Laufe des Lebens entwickeln kann, beruht häufig auch auf somatischen Mutationen in den Nebennierenadenomen.

Einteilung

Unterschieden werden können zwei arten von durch somatische Mutationen initierter Hyperaldosteronismus. (1) Beim APCC (aldosterone-producing cell clusters) befinden sich subkapsulär Zellcluster die eine erhöhte Hormonproduktion aufweisen. Diese Nebennieren erscheinen grobmorphologisch normal. (2) Im Unterschied zu den Aldosteron produzierenden Adenomen (APA). bei beiden Formen sind unterschiedliche Gene mutiert.

Gliederung

Hyperaldosteronismus
Conn-Syndrom
ATP1A1
ATP2B3
CACNA1D
CACNA1H
CTNNB1
KCNJ5
Glycocorticoid getriggerter Hypertonus
Hyperaldosteronismus Typ 1
Hyperaldosteronismus Typ 2
Hyperaldosteronismus Typ 3
Hyperaldosteronismus Typ 4

Referenzen:

1.

Scholl UI et al. (2013) Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism.

external link
2.

Kokunai Y et al. (2014) A Kir3.4 mutation causes Andersen-Tawil syndrome by an inhibitory effect on Kir2.1.

external link
3.

Murthy M et al. (2014) Role for germline mutations and a rare coding single nucleotide polymorphism within the KCNJ5 potassium channel in a large cohort of sporadic cases of primary aldosteronism.

external link
4.

Charmandari E et al. (2012) A novel point mutation in the KCNJ5 gene causing primary hyperaldosteronism and early-onset autosomal dominant hypertension.

external link
5.

Scholl UI et al. (2012) Hypertension with or without adrenal hyperplasia due to different inherited mutations in the potassium channel KCNJ5.

external link
6.

Azizan EA et al. (2013) Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension.

external link
7.

Baig SM et al. (2011) Loss of Ca(v)1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness.

external link
8.

Liu X et al. (2010) Enzyme-inhibitor-like tuning of Ca(2+) channel connectivity with calmodulin.

external link
9.

Pennartz CM et al. (2002) Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock.

external link
10.

Platzer J et al. (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels.

external link
11.

Jinnah HA et al. (1999) Calcium channel activation and self-biting in mice.

external link
12.

Mori Y et al. (1991) Primary structure and functional expression from complementary DNA of a brain calcium channel.

external link
13.

Chin HM et al. (1991) A brain L-type calcium channel alpha 1 subunit gene (CCHL1A2) maps to mouse chromosome 14 and human chromosome 3.

external link
14.

Tsien RW et al. (1991) Molecular diversity of voltage-dependent Ca2+ channels.

external link
15.

Seino S et al. (1992) Assignment of the gene encoding the alpha 1 subunit of the neuroendocrine/brain-type calcium channel (CACNL1A2) to human chromosome 3, band p14.3.

external link
16.

Seino S et al. (1992) Cloning of the alpha 1 subunit of a voltage-dependent calcium channel expressed in pancreatic beta cells.

external link
17.

Williams ME et al. (1992) Structure and functional expression of alpha 1, alpha 2, and beta subunits of a novel human neuronal calcium channel subtype.

external link
18.

Davare MA et al. (2001) A beta2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2.

external link
19.

OMIM.ORG article

Omim 600734 external link
20.

Wikipedia Artikel

Wikipedia DE (Primärer_Hyperaldosteronismus) external link
Update: 14. August 2020
Copyright © 2005-2020 Zentrum für Nephrologie und Stoffwechsel, Dr. Mato Nagel
Albert-Schweitzer-Ring 32, D-02943 Weißwasser, Deutschland, Tel.: +49-3576-287922, Fax: +49-3576-287944
Seitenüberblick | Webmail | Haftungsausschluss | Datenschutz